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Abstract: 

Online learning approaches often have to operate in the presence of data distribution (concept 
drift), it is a challenge that is steadily attracting attention to a great extent. This paper introduces 
Online Boosting Method based on Classifier Error Rate (OBMCER) based on heuristic 
adjustment to Oza and Russell’s Online Boosting. In exact terms, we empirically examine the 
facts of a) use classifier error rate for the calculation of diversity of distribution for training, b) 
computing weight distribution for the classifier using classifier error rate. OBMCER was try- 
out against the original and other modified versions of both boosting methods as well as other 
ensembles using popular artificial and real-world data sets. Results suggest that the proposed 
method achieves high accuracies, outperforming other state-of-art methods. 
Keyword: Data Streams, Online Boosting, Online Learning, Ensemble Learning. 

1. Introduction: 

At the present time, numerous applications need the use of procedures that enable the extraction 
of information in real-time. Examples of such applications include industrial process control, 
monitoring the purchase history of customers, TCP/IP traffic. Thus, the methods used for this 
reason must be constantly updated to make it suitable for new instances, considering the 
computational constraints as well. 
Boosting (Freund, 1995; Freund & Schapire, 1996) is a very popular and general method in 
order to improve the accuracy of other base learners. The aim is to train several base learners 
using different distributions over the training data merging them into an ensemble. Notice that 
several boosting methods come with some theoretical assurance about their results. 
The accomplishment of boosting based on AdaBoost.M1 (Freund, 2001) only allows a base 
learner to vote if its error is below 50%, the value connected to random guessing. However, 
when the problem is not binary, many times the necessity of 50% is too strong (Freund & 
Schapire, 1996). 
Furthermore, AdaBoost.M1 also stops executing a current instance of data quickly when it 
finds a base learner error greater than 50%. It is not a good idea to rejecting an instance because, 
one of the classifiers shows low accuracy because they access each data only once. 
Oza and Russell’s proposed a new online boosting (OzaBoost) (Oza, 2005) which makes use 
of Poisson distribution for the data distribution in an online setting. Online Boosting has been 
motivated by AdaBoost.M1 of the offline boosting method. Motivated by Oza and Russell’s 
Online Boosting (OzaBoost), ADOB (de Carvalho Santos et al., 2014) is proposed, in which 
diversity of distribution for training data set has been modified to speedy recovery when drift 
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After closely observing the aforementioned methods, we improved the Oza-Boost by adopting 
two new strategies with the intention to improve the accuracy of the ensemble. One of the 
strategies is to use classifier error rate for the calculation of diversity of distribution for training, 
to speed up recovery. Another strategy is to use the classifier error rate for the calculation of 
the weight distribution for the classifier. Based on the results of the experiments, Online 
Boosting Method based on Classifier Error Rate (OBMCER) maintains good accuracy in 
different situations, surpassing the OzaBoost in all the cases. 
The rest of the paper is organized as follows: Section 2 presents the related work; Section 3 
presents the detailed explanation of the proposed boosting method. Section 4 presents the 
experimental settings and datasets used. Section 5 presents the experimental results and 
analysis. Section 6 presents conclusion. 

2. Related Work 

Bagging and Boosting (Freund et al., 1996) is based on a strategy to train base learners on 
training data and by combining the output of individual base learners to give better predictions 
using various strategies. 
Oza and Russell’s (Oza, 2005) Online Bagging and Boosting is based on AdaBoost.M1 
(Freund, 2001). The quantity of training that individual base learners will accept on distinct 
instance showed by its weight will be accomplish using a Poisson distribution. When the 
weights are higher, there is a greater possibility of the classifiers are going to get more training. 
This function is alike to the both methods. 
OSBoost (Chen et al., 2012) is based on Smooth Boost (Servedio, 2003) uses smoother 
distribution concept to set new need for base learners, in order to revise the weights in a more 
traditional way, showing theoretical proof of performance. Given the base learners satisfy the 
constraint of showing prediction error better than the random guess in a distribution without 
difficulties, the last hypothesis will have a less error rate. 
ADOB (de Carvalho Santos et al., 2014) is a boosting ensemble based on OzaBoost(Oza, 
2005). It has a distinct approach to increase in speed among the expert’s recovery after drifts. 
ADOB arrange the experts systematically according to accuracy before executing each instance 
before influencing the way dissimilarity is distributed to the classifiers and slightly enhancing 
the accuracy of the ensemble just after the drifts, mainly when these concept drifts are abrupt. 
Note ADOB also uses a configurable auxiliary drift detector. 
BOLE (de Barros et al., 2016) is based on plain heuristic alteration to ADOB (de Carvalho 
Santos et al., 2014). More explicitly, BOLE debilitate the need to permit the experts to vote, 
enhancing the ensemble accuracy in most conditions, mainly when the drifts are frequent 
and/or abrupt, where the accuracy procures can be too high. Furthermore, BOLE gives very 
good performance in maximum datasets, regardless of the auxiliary drift identification 
approach used. 
Dynamic Weighted Majority (DWM) (Kolter & Maloof, 2007) ensemble is based on weights 
that expands the Weighted Majority Algorithm (WMA) (Blum, 1997) to detect drifts. DWM 
joins and take away base learners as per its overall performance: a base learner is joined when 
the ensemble miss-classify; the weight of individual base learner is decreased when it miss- 
classifies; and a base learner is removed when its weight is very less, pointing out it presented 
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low accuracy on many examples. 
Diversity for Dealing with Drifts (DDD) (Minku & Yao, 2012) make use of four ensemble with 
high and low diversity, before and after a drift is identified. It makes an attempt to choose the 
ensemble which are greater in number before and after drifts identified by the EDDM (Baena-
Garc\ia et al., 2006). 
OABM1 and OABM2 (Santos & de Barros, 2020) are boosting ensemble based on AdaBoost.M1 
and AdaBoost.M2 (Freund & Schapire, 1996), respectively. The OABM1 modifies the activity 
account- able for revising the instances weights of OzaBoost, preserving the features of the 
traditional batch version. The OABM2 is focusing at multiclass problems, targeting not only on 
complicated instances but also on complicated classes. The main distinctive feature between 
OABM1 and OzaBoost is the way the weights are revised. The constraints considered in OzaBoost 

i.e., ����> �/2 and ����< �/2 and does not promise the weights will be properly revised in all 

conditions when�� ≤ 1/2. On the other hand, the function opted in OABM1 for revising the weights 
does promise the weights will be properly revised in all scenarios. Similarly, OABM2 made ready 
to handle difficulties that have more than two classes and perform the job by increasing the weights 
of the weak learners in both the instances and the classes which are difficult to sort. 

2.1 Online Boosting 

Algorithm 1: Online Boosting (�	, ���������, �)  

 Set the example’s “weight” �� ← 1 

 For each base model ℎ�, (� ∈ {1, 2, . . . , �}) in the ensemble, 

• 1. Set k according to  !"�(��). 
• 2. Do k times 

ℎ� ← #$%"$&'(�&(ℎ�, �) 

• 3. If ℎ�(�) is the correct label, 
 then 

 ��� ← ��� + � 
� � � 

 �� 

 else 

← �� × 
� 

� 

 ��+ ← ��+ + � 
� � � 

 �� 

To Classify new examples: 

← �� × 
� 

� 

 For each � ∈ {1, 2, . . . , �} 
��+ , 

Calculate �� = � and .� =    �   
(���+��+) 1−,� 

� � 
 Return ℎ(0) = (12�(0 ∑ %!2 

1
  

�∈4 �:ℎ�(0)
=6 

.� 
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Online Boosting is based on AdaBoost.M1 (Freund et al., 1996), the main strategy is to train 
the base learners after the drifts are identified. Algorithm 1 indicates the Online Boosting 
(OzaBoost) pseudo-code as published in (Oza, 2005). 
Notice that OzaBoost uses the Poisson distribution parameter (��) for the diversity of distribution 

for the training classifier. If the classifier miss-classifies an instance, the parameter (��) will be 

decreased, otherwise it is increased. The increase or decrease of the parameter is done as shown 
below: 

� 
�� ← �� × 

(2 × ���) 

� 
�� ← �� × 

(2 × ��+) 

 

For the weight calculations, the error (��) is calculated which mainly depends on the 

parameter (��). For the error calculated, (.�) is calculated which will be taken with a log for 

the assignment of weight for the current classifier (�). 

 
Table 1 presents the notations used in the rest of the paper with their meanings. 

Table 1: Used notations and their meanings. 

Notations Meaning 

� A data point or instance. 
� Size of the ensemble. 
� Current expert in the ensemble M. 

�� Error rate for expert m. 
.� Weight assigned to the current expert m. 

� Poisson distribution parameter. 

��� � Sum of instances correctly classified by the expert m. 
��+ � Sum of instances wrongly classified by the expert m. 

� Number of instances seen so far in the data stream. 
7� Classifier error rate of m. 

 
3. Proposed Method 

This section introduces the proposed strategies, one is distribute instances among classifiers in 
such a manner as to achieve a desired result. Another one is computing the weight of the current 
classifier. 
Online Boosting Method based on Classifier Error Rate (OBMCER) proposes to continue the 
properties of traditional OzaBoost method, which proposes to distribute instances effectively 
among classifiers, aimed at train the classifier quickly under current environment of the data 
distribution. The distribution is controlled by the diversity, which is a Poisson distribution 

parameter (��). 

Definition 1. Classifier Error Rate: 

OBMCER uses classifier error rate or mean error rate to implement both the strategies 
effectively in order to improve the accuracies.  
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Where, pred is the prediction of the current classifier, which is either 0 or 1. Initial value of is 
one. 
Definition 2. Mean Accuracy: 

Based on the classifier error rate (7�), the computed accuracy mean is used for calculating 

the sum of correctly classified (���) and sum of wrongly classified (��+) weights of the classifier. 
The mean accuracy is defined as: 

�(�� ← (1 − 7�) 

Definition 3. Normalized Error: 

The classifier error rate (7�) of the classifier is weighted by the current data distribution, so we 

compute the normalized error as: 

   

 

 
Definition 4. Diversity distribution: 

For the diversity distribution of the data, the Poisson distribution parameter (��) has been 

modified with respect to the classifier error rate, which is defined as: 

 

 

 
Based on these definitions, Algorithm 2 provides the protocols to overcome the deficiencies of 

OzaBoost. To perform distribution correctly, Oza and Russell (Oza, 2005) adapted the rational, 

involving previous classifier Poisson distribution parameter (��) for sum of the correctly 

classified (���) and the sum of the wrongly classified (��+) for deciding the amount of training that 
each classifier will receive. However, this strategy in line 3 of algorithm 1, does not promise the 

weights will be updated properly in all the scenarios, due to involvement of previous classifier’s 
for updating weights of current classifier, not only on the error ϵm giving space for exception. 
On the other hand, the rational adopted in OBMCER for updating the weights for Poisson 

distribution (��)) and classifier as well, detailed in definitions above, does indeed guarantee the 

weights increases after wrong prediction and decrease after the correct ones in all scenarios, leads 
to tremendous impact on accuracies. 

 

 

 

 

 

 

 

 

(71&� − 7�) 
                � 

 

 

. ←    7�  
   �     (1 − 7 �)  

          ��� + ��+ 

�� ← �� × .8  ×   �  �  � 
                                    �

      2 × �
�+
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Algorithm 2: OBMCER (�	, ���������, �) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

4. Experimental settings 

This section expresses the test planned to experiment and estimate our ideas. Specifically, the 
meaningful medication, proposed to modify the way diversity is distributed during training to 
speed up the expert’s recovery in all scenarios. We tested against other ensemble aimed at 
learning from data streams with concept drifts. 
To evaluate accuracy, we use prequential test methodology (Bifet et al., 2010)(Gama et al., 
2013) with a sliding window as it forgetting mechanism (default in MOA), each input of the 
instance is tested and then it is used for training. This procedure promises that each and every 
instance make use of testing and training and avoids the conflict of training before testing on 
any given instance. We generated three artificial datasets of distinct complexities, and  

 

 

Set the example’s “weight” �� ← 1, 9 ← 1 
For each base model ℎ�, (� ∈ {1, 2, . . . , �}) in the ensemble, 

1. Set k according to  !"�(��). 
2. Do k times 

    ℎ� ← #$%"$&'(�&(ℎ�, �) 
3. If ℎ(�) is the correct label, then 71&� ← 0 else 71&� ← 1 
 

4. Calculate classifier error rate, 7� ← 7� + (71&�−7�)      
                                                                                                 � 

5. Mean Accuracy, �(�� ← (1 − 7�) 
6. If ℎ(�) is the correct label, 

 then 

• �
��

 ← �
��

 + �    (�� 
                                                           �      �     

• 9← 1 
•  .�←    7�  

                                                      (1−7�) 
 else 

�
�+

 ← �
�+

 + � 
                 � � (�� 

9← 0 
� +� �� �+ 

7. �� ← �� × .
8
 × 

 

 
                         �     2×��+ 
To Classify new examples: 
For each � ∈ {1, 2, … , �} 
 

Calculate .� ←    7�  

(1−7�) 
 

Return ℎ(0) = (12�(0∑ %!2 1�∈4 
                                       �:ℎ�(0)=6 .� 
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constructed abrupt and gradual drift versions of four distinct sizes (50K, 100K, 500K and 1M 
instances respectively) of whole 24 artificial datasets. 
Furthermore, we selected eight real world datasets to supplement the estimation of the proposed 
method, which were collected from UCI machine learning repository. The artificial datasets 
generated and real-world datasets, along with their characteristics has been given in Table 2 
and Table 3. 
Table 2: Characteristic of Artificial Datasets Generated. 

Dataset #Instances #Attributes #Classes #Drifts Drift Type 

MIXED 50K, 100K, 500K, 1M 4 2 4 
Abrupt, 
Gradual 

SINE 50K, 100K, 500K, 1M 4 2 4 
Abrupt, 
Gradual 

RANDOM TREE 50K, 100K, 500K, 1M 10 8 4 
Abrupt, 
Gradual 

 

Table 3: Characteristic of Real World Datasets. 

Dataset #Instances #Attributes #Classes #Drifts 
Drift 

Type 

Pokerhand (Bifet   et   al., 

2009) 
829,201 10 10 Unknown Unknown 

Covertype (Fr\’\ias-Blanco 

et al., 2015) 
581,012 53 7 Unknown Unknown 

Electricity (Gama   et   al., 

2004) 
45,312 9 2 Unknown Unknown 

Wall-Following Robot 
Navigation (WFRN) (Freire et 
al., 2009) 

5,456 24 4 Unknown Unknown 

Connect-4 (Zhong   et   al., 

2005) 
67,557 42 3 Unknown Unknown 

Segment (Zhong et al., 

2005) 
2,310 19 7 Unknown Unknown 

Shuttle (King et al., 1995) 58000 9 7 Unknown Unknown 
Gas Sensor Array Drift (Gas 
Sensor) (Vergara et 
al., 2012) 

13,910 129 6 Unknown Unknown 

 
5. Experimental results and analysis 

This part introduces the outcomes of the performed experiments, including analysis of accuracy 
of the methods over the selected datasets using Hoeffding Tree (HT) as base learner. 

5.1 Accuracy results and analysis 

Table 4 shows the accuracy outcomes of the tested approaches in all chosen datasets as well as 
their ranks using Hoeffding Tree. In each and every dataset and in the ranks, the best outcomes 
indicated in bold. In absolute terms, the proposed approach improved the predictive accuracies 
of OzaBoost in all most all experimented configurations, across all three experimented dataset 
generators, and in the real-world datasets. 
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Furthermore, in the artificial datasets with both abrupt and gradual drifts, OBMCER presented 
outstanding performance in all the versions using Hoeffding Tree as base learner, whereas 
OzaBoost and other approaches were normally the best. As a result, OBMCER was the best 
ranked approach in the experiments with Hoeffding Tree as base learner. It is also noticeable 
that OBMCER was comparatively more efficient in the real-world datasets. Note this fact does 
not mean OBMCER was superior to the other tested approaches. When compared to OzaBoost 
and OABM2, OBMCER consistently provide higher accuracies in all the 100K, 500K and 1M 
instances maintaining the same results in the real-world datasets as well. 
 

Table 4: Average accuracies in percentage (%) using Hoeffding Tree, with 95% confidence intervals  
in the artificial datas 

TYPE- 

SIZE 
DATASET OzaBag OzaBoost OSBoost ADOB BOLE OABM1 OABM2 

 
Abrupt 

- 50K 

MIXED 89.62±5.14 94.04±1.38 89.95±4.68 94.50±1.46 94.50±1.46 94.21±1.31 93.69±1.2 
SINE 89.65±1.85 93.72±2.75 90.57±1.97 94.19±2.82 94.19±2.84 94.48±2.28 93.14±3.0 
RANDOM 

TREE 
77.90±6.82 77.10±8.10 78.23±6.57 74.87±8.38 76.15±6.30 76.54±7.86 76.94±7.0 

 
Abrupt 

- 100K 

MIXED 91.49±3.30 95.89±1.58 91.02±4.00 96.07±1.56 96.07±1.56 95.92±1.63 95.64±1.3 
SINE 90.28±1.58 95.35±2.55 90.98±1.69 95.79±2.55 95.79±2.56 95.93±2.17 95.03±2.8 
RANDOM 

TREE 
80.10±5.58 80.03±6.73 80.68±5.50 77.62±6.76 78.35±5.24 79.59±6.57 79.63±5.9 

 
Abrupt 

- 500K 

MIXED 95.08±1.75 98.34±1.32 94.87±2.00 98.44±1.25 98.44±1.25 98.31±1.33 98.31±1.2 
SINE 94.33±1.75 97.93±1.71 93.98±1.56 98.17±1.63 98.17±1.64 98.17±1.46 98.04±1.8 
RANDOM 

TREE 
85.07±4.14 86.62±5.03 85.17±3.88 85.06±5.26 85.25±4.68 86.29±5.00 84.02±5.7 

 
Abrupt 

- 1M 

MIXED 96.42±1.41 98.92±1.08 96.33±1.51 98.96±1.01 98.96±1.01 98.87±1.08 98.90±1.0 
SINE 95.68±1.58 98.58±1.35 95.59±1.47 98.74±1.27 98.74±1.27 98.73±1.16 98.71±1.4 
RANDOM 

TREE 
87.38±3.98 89.53±4.78 87.28±3.68 88.63±5.22 88.73±4.88 89.17±4.73 89.48±4.5 

 
Gradual 

- 50K 

MIXED 89.36±5.44 93.83±1.52 89.57±5.08 94.00±1.59 94.00±1.59 93.94±1.22 92.92±1.9 
SINE 89.64±1.85 93.70±2.75 90.58±1.97 94.14±2.79 94.13±2.81 94.60±2.33 93.10±3.0 
RANDOM 

TREE 
77.90±6.82 77.10±8.11 78.23±6.57 74.86±8.37 76.14±6.29 76.55±7.87 76.94±7.0 

 
Gradual 

- 100K 

MIXED 90.95±4.09 95.64±1.54 90.55±4.65 95.94±1.55 95.94±1.55 95.83±1.59 95.40±1.3 
SINE 90.38±1.62 95.40±2.57 90.98±1.69 95.75±2.53 95.74±2.54 95.94±2.17 95.03±2.8 
RANDOM 

TREE 
80.10±5.58 80.03±6.72 80.68±5.50 77.58±6.73 78.31±5.21 79.60±6.58 79.63±5.9 

 
Gradual 

- 500K 

MIXED 95.10±1.73 98.31±1.31 94.83±2.03 98.39±1.23 98.39±1.23 98.29±1.32 98.28±1.2 
SINE 94.42±1.78 97.92±1.70 93.97±1.56 98.16±1.63 98.16±1.63 98.17±1.61 98.03±1.8 
RANDOM 

TREE 
85.07±4.14 86.63±5.03 85.17±3.88 85.06±5.26 85.25±4.68 86.29±5.00 86.90±5.0 

 
Gradual 

- 1M 

MIXED 96.40±1.45 98.90±1.07 96.28±1.56 98.94±1.00 98.94±1.00 98.86±1.08 98.88±1.0 
SINE 95.67±1.58 98.58±1.35 95.59±1.47 98.74±1.27 98.74±1.27 98.73±1.15 98.71±1.4 
RANDOM 

TREE 
87.39±3.99 89.53±4.77 87.28±3.68 88.63±5.22 88.73±4.88 89.17±4.73 89.48±4.5 

 

Real 
World 

COVERTYPE 83.62 88.59 83.89 88.88 88.88 88.69 88.63 
POKERHAND 79.88 83.08 78.4 82.78 82.8 82.16 69.72 
ELECTRICIT
Y 

84.96 89.26 85.99 89.23 89.28 89.53 52.65 

CONNECT-4 76.77 78.79 77.59 78.74 78.76 78.47 78.24 
SEGMENT 77.43 81.1 79.22 80.83 82.17 80.25 81.38 
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Complementing the analysis of the obtained results, we make use of the statistic (Demšar, 
2006)(Barros et al., 2017), based on the non-parametric Friedman tests, to compare the outcomes of 
the tests. The null hypothesis agreed that all approaches are statistically equal, and because it was 
discarded, it indicates that there is a statistical difference in some of the approaches, but the test 
doesn't indicate which. Therefore, to find this, a Post-Hoc test is essential. We selected the 
Nemenyi-test (de Barros & de Carvalho Santos, 2019), which differentiate each approach against all 
others and make use of a critical difference as a reference. The outcomes of the experiments 
referring to the data in Table 4 are outlined in Fig. 1. Fig. 2-5 presents the accuracy results in case 
of Artificial and Real-world datasets. 
 

  Figure 1: Comparison results of the m 95% confidence on the artificial data 

 

6. Conclusion 

This article proposed OBMCER, which is new online boosting method based on OzaBoost. 
The OBMCER modified the basic task responsible for updating the instance weights of 
OzaBoost and the data diversity for training. The important properties of OBMCER were 
described, make sure appropriate behavior. Furthermore, it performs diversity of data 
distribution more efficiently which is based on classifier error rate to the instances compared 
to OzaBoost, aiming at regaining quickly from the conditions where changes occur frequently. 
We executed experiments to compare OBMCER to seven different online boosting methods. 
For comparative accuracy analysis, we used two different versions of three chosen artificial 
datasets and eight real world datasets as well. The tested OBMCER configuration shows good 
accuracy in several conditions. It is worth to emphasizing that OBMCER shows the best overall 
accuracy on all experimented datasets. 

 SHUTTLE 83.29 98.67 80.59 98.63 98.63 98.88 98.65 

GAS 
SENSOR 

59.68 60.08 60.46 59.13 62.48 60.16 61.07 

WFRN 59.15 62.85 59.35 59.39 65.41 65.73 80.5 

Rank - 6.7878 4.303 6.4848 4.3787 3.7727 3.8333 4.9999 
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