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Abstract: In this paper, the proposed work is based on a multi-modal fusion framework for 
human activity recognition (HAR). This approach makes use of three modalities such as RGB, 
depth maps and 3D-Skeletion joint position to develop robust HAR system. Two 3DCNN 
models with different network parameters and an LSTM model are used to obtain the features 
from each modality. Next, the score of each activity is obtained using SVM in each model and 
optimized using two evolutionally algorithms. The experimental work on the public dataset has 
also been discussed to validate the proposed approach. The experimental results show that the 
proposed framework is an improvement over previous work and is capable of accurately 
recognizing human activities 
Keywords: Human Activity Recognition (HAR), Deep Learning, LSTM, 3DCNN 

I. INTRODUCTION 

The RGB video sequences used in the development of the human activity detection system are 
insufficient to accurately identify every human activity. This is because the human body's 
articulated structure is only captured in two dimensions by the RGB video frames; it is not 
feasible to record every movement of the body simultaneously in three dimensions, which leads 
to the loss of three dimensions and the inability to achieve human locations and scale variations 
in three dimensions. On the other hand, depth maps give an indication of 3D joint positions 
and are less impacted by changes in lighting. The sensitivity of the depth map is lower than 
that of RGB videos. Moreover, 3D skeleton data uses 3D coordinate coordinates to represent 
the head, neck, abdomen, and other body parts of a human in 3D space. When compared to 
other lighting conditions and perspectives, this representation is more potent. When all three 
modalities are used combined, the robust activity recognition may be more accurate than when 
utilising any one of them alone. As a result, employing many modalities to precisely identify 
the activities becomes simple. 
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Figure 1.1: Activity recognition in RGB, Depth, and Skeleton information (a) Activities 
("drink," "cheer-up," "standup," "playing-guitar") only in RGB frames that lose some of the 
body movement in 3D space (b) Activities ("drink," "cheer-up," "standup," "playing-guitar") 
only in depth data that loses appearance and spatial information (c) Activities ("drink," "cheer-
up," "standup," "playing-guitar") only in skeleton that loses appearance information but retains 
3D movement information and is insensitive to changes in illumination and perspective. [1] 
Figure 1.1 (a) [1] depicts human activity in RGB frames with some body movement 
information lost in 3D space. Comparably, Figure 1.1 (c) [1] depicts activity in 3D skeleton 
joint positions in 3D space and is insensitive to changes in illumination and view variations, 
while Figure 1.1 (b) [1] only depicts activity in-depth data and does not contain appearance 
information. 
Even though numerous studies have combined multi-modality (RGB, depth, and skeletal data) 
to perform activity recognition [2–11], there is still room for improvement in terms of 
recognition accuracy. Therefore, in order to create a reliable activity detection system, the 
research project that is suggested in this chapter makes use of all three modalities, including 
RGB, depth, and 3D-skeleton data, employing evolutionary algorithms. 
 

II. LITERATURE SURVEY 

To accomplish activity recognition tasks with robustness and efficiency, multimodality activity 
recognition integrates many modality features, including RBG, Depth, and Skeleton data. Ijjina 
et al. [3], for instance, presented a motion sequence-based deep learning method for RGBD 
data-based activity recognition. With this method, every activity sequence has a crucial pose. 
The convolutional neural network receives the pattern derived from the RGB and depth video 
as input to learn discriminative features. Using four datasets, including the SBU Kinect 
interaction, NATOPS gesture, MIVIA action, and Weizmann datasets, the effectiveness of the 
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proposed strategy is shown.  A multimodal method for activity recognition that makes use of 
both local and global motion cues was presented by Gu et al. [4]. Depth based 3-Channel 
motion history pictures (MHIs) are utilised for global feature learning. In a similar vein, 
skeleton graphs are used to facilitate learning of local spatial and temporal aspects. The scores 
from each stream are then combined. The effectiveness of the suggested strategy is 
demonstrated by the experimental findings, which are based on two RGB-D datasets. Zho et 
al. [5] developed a three-stream 3D space-time convolutional neural network (3DSTCNN) 
architecture for activity recognition based on depth and skeletal data. For global space-time 
feature learning, the original depth map, depth motion maps derived from depth data, and 3D 
skeleton sequence are input into separate streams. Using skeleton and depth data, all streams 
are optimised to learn space and time features efficiently. Three activity recognition datasets, 
including UTD-MHAD, MSRAction3D, and UTKinectAction3D, are used to assess the 
suggested methodology. The outcomes of the experiment demonstrate how successful the 
suggested system is. In order to recognise human activity, Singh et al. [6] developed a multi-
modal system that makes use of RGB, Depth, and 3D joint coordinate data. Using all of the 
information that is simultaneously available, they proposed the deep bottleneck multimodal 
feature fusion (D-BMFF) framework. Prior to being coupled with RGB and depth frames, 3D 
joint coordinates are transformed into RGB skeleton motion history images (RGB-SklMHI), 
from which features are retrieved for deep network training. The characteristics obtained from 
the bottleneck layer immediately before the top layer are fused using a multi-set discriminant 
correlation analysis (M-DCA). The characteristics are then divided into several activity classes 
using a multiclass SVM. Four activity recognition datasets, including UTKinectAction3D, 
SBU Interaction, CAD-60, and Florence 3D dataset, are used to assess the proposed 
methodology. Additionally, Weiyao et al. [7] introduced a multi-modal system for activity 
recognition based on the Bilinear Pooling and Attention Network (BPAN). The characteristics 
that are extracted from RGB and skeleton data are compressed using the BPAN model after a 
data preparation operation for the RGB and skeleton data. Lastly, a fully connected perceptron 
network is employed for activity classification. The acquired experimental findings show that 
the proposed strategy is better than the state-of-the-art methods discussed before. 
A technique for large-scale video categorization based on RGBD data was presented by Li et 
al. [8]. This method involves first extracting a sequence of 32 frames from the RGB and depth 
modalites, which are then fed into the C3D model for the purpose of learning space-time 
characteristics. Subsequently, the features that were retrieved are merged to minimise 
superfluous synthetic data and enhance overall performance. Using an SVM classifier, the 
proposed method validates the Chalearn LAP ISoGD dataset with 49.2% accuracy. The method 
achieves the highest recognition accuracy of 56.9% with test data, outperforming the baseline 
and other approaches. Additionally, Zhu et al. [9] proposed a multimodal gesture detection 
system based on ConvLSTM memory networks and 3D convolution. The approach that is 
being given uses 3DCNN to learn short-term spatial-temporal characteristics, and ConvLSTM 
network, which is based on extracted short-term features, is used to learn long-term spatial-
time features. The model is fine-tuned to avoid the overfitting. The technique achieves 98.89% 
on SKIG and 51.02% recognition accuracy on the IsoGD validation set. It is validated using 
the ChaLearn LAB ISoGD dataset. An unsupervised learning method that quickly picks up 
motion information from the video was presented by Luo et al. [10]. The proposed framework 
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effectively acquires long-term 3D motion from two movie clip pictures. To get around the 
framework's intricacy, the motion is depicted as a three-dimensional flow. Moreover, these 3D 
flows are predicted using an encode-decoder based on RNNs. The NTU RGB+D and 
MSRDailyActivity3D multimodality datasets are used to test the efficiency of the suggested 
method. The suggested framework works with any kind of modality, including RGB, depth, 
and RGBD. For RGB and skeleton-based activity recognition, Mahasseni et al. [11] introduced 
a regularisation of LSTM. The method that is being given also makes use of an additional 
encode LSTM (eLSTM) that is based on the human skeleton. The 3D body joints should aid in 
the learning of pertinent motion patterns because the skeleton coordinates positions are 
unaffected by view variation and backdrop clutter. 
 

III. PROPOSED METHODOLOGY 

 
Figure 1.2 Flow diagram of the proposed approach 

The suggested method's flow diagram is shown in Figure 1.2. The steps that follow outline the 
total contribution of our suggested work. 

 The first phase involves learning features from skeleton data using an LSTM network 
and extracting space-time information from RGB and depth video sequences using two 
3D-Convolutional Neural Networks. 

 To provide the class scores for each test activity in distinct streams, an SVM network 
is then trained using features that were taken from each of the three models. 

 Ultimately, two evolutionary algorithms are employed to fuse and optimise the class 
score of the test activities. 
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 The suggested methodology is validated using two publicly accessible human activity 
datasets, UTKinectAction3D and MSRDailyActivity3D, yielding 96.05% and 85.74% 
recognition accuracy compared to the aforementioned cutting-edge techniques. 

 The outcomes of the experiment show how successful the suggested strategy is. 

3.1 Learning spatial-temporal characteristics from RGB data with 3DCNN: 
A spatial-temporal 3D-convolutional neural network that may simultaneously acquire 
information along the time and space dimensions is the 3DCNN, as described in [12]. By 
convolving the 3D filter across the 3D volume input data, the convolutional 3D features may 
be derived. A series of frames piled one on top of the other makes up the 3D volume data. The 
depth dimension and temporal information are both learned, and several feature maps are 
derived from several neighbouring frames in the preceding layer. Multiple convolutional layers 
are employed to extract characteristics in both lower and higher dimensions. Consequently, a 
large number of convolutional layers are used in order to enhance the number of feature 
mappings in the network. The 3D filter is thus convolved on the 3D input cube to produce a 
convolutional 3D. 

 
Figure 1.3 illustrates the 3DCNN feature learning architecture using RGB data. 

RGB video sequences are utilised to teach a 3DCNN model spatial and temporal features. The 
three layers of the 3DCNN are two pooling and two convolutional. We stacked a fixed number 
of frames along with the depth dimension because it is a difficult effort to standardise all films 
in the dataset to have an equal number of frames because each video in the dataset has a distinct 
number of frames. In order to conduct the experiment, the depth dimension was captured in 16 
frames. As a result, the 3DCNN model receives an input cube with the dimensions [16×50×50]. 
The input cube is first processed by the first convolution layer (C1), and the output of C1 is 
subsequently processed by the first max pooling (ML1) layer. In the meantime, there is a 20% 
dropout rate between ML1 and C1. With 50% dropout between C2 and ML2, the model 
employs a second set of convolutional layers (C2) and a maxpooling layer (ML2). The model 
employs a fully connected layer (FC) to discover the feature vector after the second max 
pooling layer. Following the completely connected layer in the model is a single dense layer 
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with sixty neurons. Our proposed model ends with an output layer that uses a softmax layer. 
The final dropout layer, which has an 80% dropout amount, is utilised right before the softmax 
layer. The model employs 12 and 64 filters in the C1 and C2 layers, respectively, with sizes of 
(3×1×1) and (3×3×3). In the MP1 and MP2 levels, the network uses the same down sampling 
size (2×3×3) for each maxpooling layer. For the MSRDailyActivity3D and UTKinectAction3D 
datasets, RGB video sequences have been processed using the same network settings. 

IV. RESULTS & DISCUSSION 

In this work, we trained and tested our proposed technique on two datasets: 
MSRDailyActivity3D [1] and UTKinectAction3D [13]. The dataset is captured by a Kinect 
sensor. Every action within the dataset is coordinated across all platforms. 
The Kinect depth sensor was used to create the MSRDailyActivity3D [1] dataset. It lists sixteen 
human actions, including calling a cell phone, using a laptop, walking, sitting, lying down on 
a sofa, eating, playing an instrument, standing up, sitting motionless, drinking, throwing paper, 
using a hoover, reading a book, playing a game, writing on paper and cheering yourself up. 
Ten subjects—five of whom were male and five of whom were female—generated the dataset. 
Every activity was recorded while the subjects were in a room with a sofa. This indicates that 
there is interaction between the item and the person while they are engaging in an activity 
during activity capture. Every participant completes each task twice, once while seated and 
once while standing. Each action is recorded in three distinct modalities: skeleton, depth map, 
and RGB. A single modality corresponds to 16×10×2 = 320 activity sequences, resulting in 
320×3 = 960 total. Sample frames from the "Cheer up" activity of the MSRDailyActivity3D 
dataset are shown in Figure 1.4 in the RGB, depth, and skeleton modalities at various time 
intervals. 

 
Figure 1.4: A selection of example frames from the MSRDailyActivity3D dataset's "Cheer up" 
activity in the RGB, depth, and skeleton modalities at various time intervals. 
The suggested method is validated using the human activity dataset UTkinectAction3D [13]. 
There are ten indoor human actions in the dataset. All activity sequences were recorded at a 
frame rate of 30 frames per second using the Windows SDK kit and the Kinect depth camera. 
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The Kinect camera is capable of capturing all three modalities, RGB Depth, and skeleton, at a 
range of 4 to 12 feet. Ten human indoor activities that were recorded by ten participants are 
included in the dataset; of these, nine are performed by men and one by women twice. Except 
for one person who is left handed, every subject is right handed. This video collection has 
10×10×2 = 200 activity sequences altogether for each modality. Consequently, 200 × 3 = 600 
activity sequences total. 
Standing, carrying, walking, pushing, wave handing, pulling, throwing, sitting, picking up, and 
clap handing are the ten activities included in the dataset. The actions were recorded in an 
indoor setting. An additional text file included in the dataset has labels for every activity 
sequence. A selection of sample frames from the UTKinectAction3D dataset, comprising ten 
distinct activity sequences in each of the three modalities, are shown in Figure 1.5. 

 
Figure 1.5: Some sample frames of UTKinectAction3D dataset with 10 different activities in 
all three modalities RGB, Depth and Skeleton sequences. 
Experiments include the use of 3DCNN to extract spatiotemporal features from RGB video 
sequences, another 3DCNN to extract spatiotemporal features from depth maps, an LSTM 
network to extract spatiotemporal features from skeleton sequences, and a trained SVM model 
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for classification. The first 3DCNN network was tested with several input cube combinations, 
such as (13×50×50), (14×50×50), (15×50×50), and (16×50×50), and it produced the best 
spatial-temporal characteristics at the (16×50×50) input cube size. To extract spatio-temporal 
characteristics from the depth sequences and achieve the best set of features at an input size of 
(13 × 32 × 32), several combinations of input cubes, such as (13 × 32 × 32), (14 × 32 × 32), 
(15 × 32 × 32), and (16 × 32 × 32), are also utilised. The learning rate for both networks was 
set to 5 × 10-4 for training. During the network training, an Adam optimizer and a categorical-
cross entropy loss function were employed. 
To validate our suggested strategy, we used the Leave One User Out Cross Validation 
(LOUOCV) technique. Ten-fold cross validation has been employed in this work, where nine 
users are used to train the network and the remaining user is used to test the network after each 
fold. One × 16 × 2 = 32 activity sequences is utilised for testing in each fold during validation, 
while nine × 16 × 2 = 288 activity sequences are used for training. Each test activity's class 
score is recorded at the time the network is tested. 

 
Figure 1.6: The suggested method's confusion matrix for the MSRDailyActivity3D Dataset 

V. CONCLUSION 

An approach to deep multi-modal fusion for human activity recognition is presented in this 
research. The suggested method operates in three phases. First, using two 3DCNN models and 
an LSTM model, respectively, the spatial and temporal characteristics are extracted from the 
RGB, depth, and skeleton sequences in all three modalities. Second, three SVM models with 
the same network parameters are trained in parallel for each modality using the deep features 
that were recovered in the first phase. These SVM models are then used to provide class scores 
for each test activity. The final step involves merging and optimising each test activities 
generated class scores using GA and PSO, two evolutionary algorithms. Based on two 3D 
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Convolutional Neural Networks and an LSTM network, the experimental findings show that 
the proposed technique learns high level spatial and temporal characteristics from all three 
modalities relatively rapidly. The method works better than using just one modality at a time 
because it uses RGB, depth, and skeleton sequences, which are the three modalities. The class 
label judgements from all three parallel models are completely exploited by providing an 
optimization-based score fusion approach. For this purpose, a Genetic Algorithm (GA) is used. 

 
Figure 1.7: The proposed approach's confusion matrix on the UTKinectAction3D dataset 
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