
 
 
 
 
 
 
 
 
 

 

Semiconductor Optoelectronics, Vol. 42 No. 2 (2023), 1570-1581 
https://bdtgd.cn/ 

1570 

WEED SEEDLING CLASSIFICATION USING AN IOT-ENABLED MODEL: A 
SMART AGRICULTURE APPLICATION 

 
A.Mamatha 

Research Scholar, Department of ECE, Chaitanya University (Deemed to be), Hanamkonda, 
TS, India 

 
Dr.G.Santhosh Reddy 

Assoc. Prof, Department of ECE, Chaitanya University (Deemed to be), Hanamkonda, TS, 
India 

ABSTRACT 
"Smart agriculture" is an approach to farming that prioritizes constant observation and 
modification of agricultural practices to maintain food supply in the face of environmental 
change. It's indisputable that "smart farming" has the enormous effect that technology is having 
on agriculture. Smart farming's main focus is using technology to improve quality and 
efficiency in the agricultural sector. The Internet of Things (IoT) and digital image processing 
are two essential technologies in this field. The Internet of Things (IoT) includes 
multifunctional technology, and digital image processing paves the way for numerous IoT-
integrated applications with its wide range of imaging sensors and methods. In this research, 
we investigate an analytical framework for integrating these technologies for weed 
identification in agriculture. To achieve this, we're introducing the Graph Weeds Net (GWN), 
an innovative graph-based deep learning model based on RGB images taken in complex 
environments and designed for recognising an extensive number of weed species. For exact 
weed identification, GWN captures different visual characteristics and produces multi-scale 
graph representations. Particularly useful for automated farming systems, GWN highlights 
important image areas to promote focused actions. Using a recently released benchmark 
dataset, we found that GWN performed highly, with a top-1 accuracy of 98.1%. 
Keywords: Graph Weeds Net (GWN), Smart agriculture, Internet of Things 
 
INTRODUCTION 
Today, the number of devices connected via the Internet of Things (IOT) surpasses the global 
population [1]. IOT describes a world where various devices, from everyday gadgets to cars, 
connect to the internet and interact with other devices. This network primarily consists of 
sensors, wireless communications, and other technologies [1]. It's not just about electronic 
devices; everything from ATMs to alarm clocks falls under the IOT umbrella. This connectivity 
fosters a deeper interaction between humans and their environment, enhancing efficiency, 
reliability, and adaptability [2]. 
Image Processing 
Humans depend significantly on visual input as their major source of information, with a 
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significant amount of our brain dedicated to processing what we see [3]. Image processing 
entails improving or analyzing images in order to gain insights [3]. This technology has 
advanced quickly and is now used in a variety of applications such as gesture recognition, 
driverless vehicles, medical imaging, and more [4]. 
Smart Agriculture:"Smart agriculture" refers to a modern approach to farming that uses 
technology to improve crop health and yield [5]. It's not only about employing technology; it's 
about monitoring crops, soil, and the environment in real time. While smart agriculture used to 
be primarily reliant on information technology infrastructure, tools such as mobile apps, 
sensors, cloud computing, and drones have made it available to farms of all sizes [6, 7]. IoT 
plays a critical role in this, improving agricultural operations ranging from crop monitoring to 
water management. It enables farmers to respond quickly to changes, ensuring ideal crop 
conditions [8,9]. Furthermore, IOT simplifies the agricultural supply chain, providing efficient 
logistics. 
Drones, sensors, and IoT devices collaborate in the field of smart agriculture to provide farmers 
with important data for efficient farm management. With developments in imaging techniques 
such as thermal and hyper-spectral imaging, digital image processing, in particular, has 
demonstrated its efficacy in smart farming applications [11]. Farmers may receive professional 
advise quickly thanks to the integration of wireless networks and image processing, which aids 
in tasks such as crop management, weed detection, and plant health monitoring [12]. 
While both IOT and image processing have been used in numerous sectors, their combined use 
in agriculture is still relatively unknown. However, combining these two can result in improved 
outcomes in smart agriculture [13,14]. A important study named "Implementation of IoT and 
Image Processing in Smart Agriculture" revealed the potential of this combination, allowing 
ways of finding factors affecting plant growth [15]. 
 
2. METHODS 
A weed is a plant that is growing in a wrong place. Smart agriculture depends significantly on 
plant management. The objective of weed plant management, which is part of the botanical 
aspect of pest management, is to stop weeds, especially harmful weeds, from interfering with 
desirable flora and fauna, such as domesticated plants and livestock, and to stop non-native 
species from becoming more numerous in natural settings than native species. Herbicides can 
be used chemically, hoes can be used manually or mechanically, mulch and soil solarization 
can be used to suffocate weeds, and extreme heat and fire can kill them [16]. However, knowing 
what kind of weed plant you're up against is essential before using any herbicides [17]. In this 
section, we will go through the basics of how to put up a smart agricultural application for 
classifying weed plants. The method of detecting weed plant seedlings using cloud-based IoT 
and image analytics is depicted in Figure 1. In this configuration, the IoT gadget uploads the 
photo of the cannabis plant to the cloud over a wireless network. When the cloud-based picture 
analysis are complete, the farmer is notified. 
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Figure. (a): A typical IOT-based image analytics model for smart agriculture [13]. (b): IOT-
enabled smart agriculture architecture including crop collection, sensory, analytical/cloud, 

and prediction layers. 
 
An Internet of Things (IoT)-enabled smart capture system and crop sensory system are 
displayed integrated in Figure 1. The graphic depicts the basic structure of the suggested 
approach. Layered architecture, with the analytics component deployed to the cloud, is also 
shown. Here we detail the specific processes taking place within the IoT-enabled framework. 
 
Artificial Intelligence (AI) 
Artificial intelligence (AI) is a subfield of computer science that tries to provide machines 
human-like intelligence and performance. The abilities of learning, reasoning, problem solving, 
perception, and understanding a language [18,19] all play a part in this. 
 
Machine Learning (ML) 
Learning plays a crucial role in AI. This concept, when applied to machines, describes their 
capacity for learning and growth over time. This is investigated in machine learning, which 
uses many kinds of methods to create models from existing data. 
 
Deep Learning (DL) 
Deep learning is an advanced branch of machine learning that employs artificial neural 
networks with multiple layers, often referred to as "deep neural networks" [20-29]. This depth, 
characterized by the number of layers in the network, allows for complex pattern recognition 
and data abstraction. 
In applications like autonomous vehicles, deep learning models can identify and classify 
objects in real-time, such as distinguishing between a stop sign and a pedestrian. The efficacy 
of these models is contingent upon the architecture of the neural network and the availability 
of vast labeled datasets for training. 
There are several architectures within deep neural networks: 
 Multi-layer Perceptron (MLP): A foundational network structure with multiple layers 
of nodes in a feed forward configuration. 
 Convolution Neural Network (CNN): Optimized for processing grid-like data, such as 
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images, by using convolution layers to filter input data. 
 Recurrent Neural Network (RNN): Designed for sequential data processing by 
incorporating loops to allow information persistence. 
These sophisticated neural network architectures are at the forefront of technological 
advancements, driving innovations in various domains [30,31]. 
 

 
Figure 2. Flow graph of the entire system. 

 
GWN ArchitectureOverview forWeed Classification 
The Graph Weeds Net (GWN) is a sophisticated architecture tailored for the precise 
classification of weeds. Its foundation is built upon a unique local-global scheme, ensuring that 
the intricate details and broader aspects of weeds are both captured and represented accurately. 
The first component of the GWN is the Multi-scale Graph Convolution Layer. This layer is 
pivotal for processing the input RGB images. By operating across multiple scope scales, it 
ensures a comprehensive interpretation of the images. Whether it's the minute details or the 
overarching features of the weeds, this layer captures it all. As a result, each scale produces a 
distinct graph representation, encapsulating the spatial relationships and unique features of the 



 

 

Semiconductor Optoelectronics, Vol. 42 No. 02 (2023) 
https://bdtgd.cn/ 

1574 

weeds. 
Following this is the Graph Pooling Layer. Its primary role is to refine the data extracted from 
the images. By acting on the vertices of each graph, it employs a strategic selection mechanism. 
This mechanism focuses on specific patterns within the image, particularly those with a high 
likelihood of representing the target weed. In doing so, it emphasizes the most relevant 
information, filtering out any noise or unrelated details. 
Lastly, the architecture incorporates a Recurrent Neural Network (RNN) Layer. This layer is 
tasked with consolidating the data from the multi-scale graph representations. By processing 
this data in a sequence, the RNN ensures that the system retains and utilizes previous 
information, leading to a holistic understanding of the weed's features. Ultimately, based on 
this comprehensive analysis, the layer delivers predictions, determining the precise 
classification of the weed. 

 
Figure 3: Graph Weeds Net (GWN) 

 
2.1. Multi-scale weed graphs 

Input: RGB Image X∈Rm×n 

Output: Weed species classification response y 

Steps: 

1. Initialization: 
a. Set scales  s={1,2,3} representing global, 2x2, and 4x4 grid patches. 
b. Load pre-trained CNN model. 

2. Patch Extraction: 
a. For each scale s in s: 

i. Extract patches from image X. 
ii. Store patches in set s={v∣i=1…n}. 

3. Feature Extraction: 
a. For each patch p in set s: 

i. Apply pre-trained CNN to patch p. 
ii. Obtain feature vector vs

p∈RDs, where Ds is the dimension. 
4. Graph Construction: 

a. For each scale s: 
i. Construct a directed graph Gs=(_s,As). 
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ii. Treat s as a set of vertex features. 
iii. Define As=aijs∈Rns×ns as a weighted adjacency matrix to represent 

relations among vertices. 
5. Weed Species Classification: 

a. Associate a response y with the image and its multi-scale graphs Gs to indicate 
the weed species. 

b. For each patch p in Gs: 
i. Define yp

s as a one-hot encoding vector indicating the presence or 
absence of the target weed species. 

6. Training Considerations: 
 

a. Use only the image-level response y for supervision. 
b. Note: Patch-level annotations yp

s and As are not required during training. 
c. The method operates as a semi-supervised learning approach. 

 
 
2.2. Graph convolution layer 
 

Input: Graph instances with arbitrary structures, Vertex features 𝑣 and 𝑣  

Output: Characterized weed patterns 

Steps: 

Initialization: 
Estimate adjacency matrix As 
 within GWN. 

Set g(・) as a linear function. 

Estimate Adjacency Matrix As: 
For each element 𝑎 in As: 

Compute using the relation between vertices i and j. 
Use Eq.(1) with bilinear pooling operations. 
Decompose Ms using low rank decomposition. 
Normalize Adjacency Matrix: 
For each row 𝐴 in As: 
Normalize using the l2 norm of 𝐴  
Compute Graph Convolutions: 
For each layer l: 
Compute the output 𝐻{ )using 𝑊 As, and 𝐻  

Introduce non-linearity using 𝑓  
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Pattern Exchange Among Vertices: 
Multiply weighted adjacency matrix Aswith 𝐻  
Interpret as pattern exchanging based on edge weights in As. 
Determine Vertex Connectivity: 
For each row 𝐴 of As: 
Determine weights of edges connecting 𝑣 and 𝑎  

Transfer patterns from 𝑣  to 𝑣  based on 𝑎  value. 

Compute Final Output: 
Multiply AsHs with 𝑊 Treat as computing Ds independent samples using a fully connected 
layer. 
 
2.3. Vertex-wise dense layer 
In general, stacking multiple graph convolution layers produces representations of weeds that 
are properly exact for the identification of weed patterns. As the adjacency matrix As can be 
learned during the computation of graph convolutions, it significantly raises model complexity 
and introduces the possibility of overfitting. In this study, these problems were mitigated by 
employing the vertex-wise dense layer, which computes independently on each vertex while 
sharing weights. By employing the adjacency matrix, there is no exchange of patterns between 
the vertices, unlike in graph convolution layers. The computations of a vertex-wise dense layer 

can be expressed as follows:  
 

W ∈ R ∗  is a matrix of a linear transformation: 𝑅 →𝑅 and fls introduces the non-

linearity, where Hs∈𝑅 is the output of the l-th layer. The layer is a particular instance of 
the graph convolution layer if the adjacency matrix As = I. remains constant. This means that 
the vertex-wise dense layer can handle input graphs with any number of vertices. 
 
2.4. Multi-scale graph pooling & concatenation 
The complete graph weed representation at scale s, including the graph convolution layers and 
vertex-wise dense layers, is denoted as Hsl∈𝑅 It is easy to see how the number of vertices, 
denoted by Ds, and the size of their features, indicated by s, change at different zoom levels. 
Therefore, in this research, a two-stage pooling method was developed to aggregate the patterns 
from each scale. 
To build complete weed representations, an RNN is first applied to the graphs, after which the 
vertices are pooled for each scale. 
 
With the graph convolution layers and the vertex-wise dense layers, denote as the final graph 
weed representation at scale s.Notice that the vertex count Ds and the dimensions of the vertex 
featuresvary with the different scale s. Hence, to combine the patterns from each scale, a two-
step pooling manner is devised in this study. 

 
It can be done to apply the vertex-based pooling operations. The average pooling, for instance, 
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is seen in Eq.. 

 
The different dimensions of the pooled graph representations are then corrected by a linear 
transformation. 

 
 
The mapping from the pooled graph representation of scales to the consistent dimension p is 

given W ∈ R ∗  As a result, we can represent a set of graphs using the notation {Hs}. RNNs 
are used to process the sequential linput {Hs} in order to extract the global-local graph patterns 
from the series. As a result of the gradient vanishing and exploding problems that plagued 
earlier attempts at sequential modeling (Hochreiterand Schmidhuber, 1997; Cho et al., 2014), 
newer proposals have included gated methods (such as LSTM and GRU) that have proven 
highly effective. Using Hs as an input sequence, the hidden state {Hs}.  can be calculated using 
the corresponding Eqs. 
 

 

 

 

 

 
Whereis, fs and os is the input gate, forget gate and output gate, respectively. Such gated 
mechanism controls the extent of the patterns are introduced or kept when computing the cell 
state cs and hidden statehs. 
 
2.5. Weed identification 
For weed detection using dense layer, we use the state of the final RNN cell. In particular, the 
dimension is provided by the linear layer as the number of desired weed types, and the weed 
probability vector is created via application of a sigmoid function. It is important to note that 
the sigmoid function is utilized in place of the softmax function, which is employed for mutual 
exclusion classification issues, when a single input image contains different weed kinds 
concurrently. To further facilitate optimization, we adopt an average of multiple binary entropy 
loss functions, one for each class. Supervision information was annotated at the picture level, 
but not the patch level, and the outputs of the proposed method offer prediction at the image 
level. The vertex-level patterns of Eq. (6), for instance, are computed under the guidance of the 
image-level labels alone, despite the fact that they are supposed to include correct localized 
patterns. Since the pooling method summarizes patch patterns, the weeds may be most strongly 
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linked to the patches that contribute most heavily to the summary. As a result, we engage in 
patch-level semi-supervised learning. 
 
2.6. Image Data Set 
The present research makes use of a freely accessible image dataset that includes images of 
weeds, total approximately 4234 individual plants and representing 12 weed plant species [26]. 
These 12 species of weed plants were gathered by the Signal Processing Club at Aarhus 
University. Images of representative weeds from each group are displayed in Figure. 
 

 
Figure. Weed plant image dataset samples. 

 
Color image processing in the HSV space is used to segment all of the weed images, and then 
morphological procedures are performed on the segments. Figure displays some example 
segmented photos of weeds. 
 
 

 
Figure 4. Segmented weed plant image dataset samples. 

 
3. CONCLUSION 
In this paper, we introduce Graph Weeds Net, a unique deep architecture that uses RGB images 
gathered from rangelands to precisely recognize weed species. GWN is designed to incorporate 
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weed-related knowledge by portraying an RGB image as multi-scale graphs.Vertex-wise dense 
layers, multi-level graph pooling methods, and graph convolution layers are all components of 
the GWN architecture, which can build fine-grained level deep representation and is projected 
to enhance the performance of weed detection tasks. Additionally, GWN has the option to 
pinpoint the main areas of the full image, indicating the high likelihood of the target weeds 
being present rather than the foreground or other plants. The important thing to note is that no 
prior knowledge of weed localisation through annotation is necessary, making GWN a semi-
supervised learning strategy that reduces the laborious annotation responsibilities. GWN is 
assessed using a freshly released benchmark dataset called Deep Weeds, and it performs at the 
cutting edge, with a top-1 accuracy of 98.1%. Future work will concentrate on enhancing the 
efficiency of the architecture while enhancing the performance of the identification task. 
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