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Abstract— Landslide inventories are important application for analyzing the geospatial 
information for landslide hazards. A landslide-inventory map is one of the essential for 
identifying the past landslides using very high-resolution (VHR) satellite images. To mitigate 
the losses and damage resulting during landslides, it is very essential to analyze the past 
landslides which are more prone to landslides. This research aims to construct an accurate 
landslide inventory map for the section of ghats of Karnataka region using remote sensing and 
Geographical Information System (GIS). In this study, a comparison between existing 
landslide inventories and satellite landslides data are used for identifying the distribution of 
landslides. Existing inventories like NASA Landslides points and Bhuvan landslide data are 
used for preparing inventory maps which consists of 1532 landslide points. Google Earth 
Engine (GEE) provides access to a vast collection of satellite imagery, including historical 
datasets from satellites such as Landsat and Sentinel-2.  These data are used for object-based 
image analysis to extract and prepare a landslide inventory map. Satellite data of high to very 
high resolution such as IMS-1(17 Bands), Resourcesat-2 and 2A LISS-III Ortho, Cartosat-1 
and Aerial images were used in the mapping of landslides. Around 48 potential landslide points 
have been identified by the object-based image analysis. The Final inventory map consists of 
1369 out of 1580 landslide points with 48 landslide points identified are confirmed and mapped 
by VHR Satellite images using Google Earth Engine. 
Index Terms — Adaptive region, Inventory Map, Landslides, Satellite Images, Segmentation, 
very high-resolution Images 
 
I. INTRODUCTION 
Natural hazards are events caused by nature, like landslides or floods, earthquakes, tsunamis, 
and volcanic eruptions affecting human societies and ecosystems. Understanding these 
processes and their potential impacts is crucial for preparedness, response, and mitigation 
efforts to minimize the harm they can cause to communities and ecosystems [1]. Landslides 
are a type of natural hazard that can occur on both land and in water. They are widely spread 
globally and particularly very common in areas like the Himalayas and the Western Ghats in 
India. Landslides are downward and outward movement of soil or rock mass that will be set 
off by one or more causes under the influence of gravity. The occurrence of landslides is 



 

 

Semiconductor Optoelectronics, Vol. 42 No. 02 (2023) 
https://bdtgd.cn/ 

670 

influenced by factors like the quality of rock, the shape of the slopes, and the overall 
geographical and environmental conditions. Remote sensing and geographic information 
systems (GIS) are the techniques used for the scientific study of landslides. Remote sensing 
involves using satellite imagery or aerial photography to gather data from a distance, aiding in 
the identification and monitoring of landslide-prone areas. GIS, on the other hand, provides a 
platform for storing, analyzing, and visualizing geographical data. By integrating data from 
various sources such as topography, soil type, rainfall patterns, and historical landslide 
occurrences, GIS enables researchers and planners to assess landslide susceptibility and 
develop effective mitigation strategies. These technologies collectively enhance our 
understanding of landslides, contributing to informed decision-making and hazard 
management. According to data from the Geological Survey of India around 12.6\% of India's 
land is prone to various degrees of landslide risk. 
As per Emergency Response Coordination Centre (ERCC) provides a Global overview of 
landslides for the period 01 January 2022 to 27 June 2022. According to The Geological Survey 
of India, over 15 \% of India’s landmass is prone to landslides, 300 people losing lives every 
year. The landslide prone areas are the North-East Himalayas, North West Himalayas, Western 
Ghats and Konkan Hills and Eastern Ghats. Over 3,782 landslides have occurred between 2015 
and 2022 in various states and Union Territories. Kerala has highest with 2,239 landslides and 
followed by West Bengal reported the second-highest number of landslides with 376. The 
Geospatial Landslide Inventory Database, mapped by NRSC/ISRO under the DMS program, 
covers a comprehensive collection of 80,000 landslides across India. This database spans the 
period from 1998 to 2022 and covers landslide-prone areas in 17 states and 2 union territories, 
primarily within the Himalayas and Western Ghats. The inventory is categorized into three 
types: seasonal, event-based, and route-wise, focusing on the specified time frame. The event-
based inventory highlights significant triggers like the Kedarnath and Kerala disasters, the 
Sikkim earthquake, and substantial valley-blocking landslides. The route wise inventory details 
landslides along important tourist and pilgrimage routes. The mapping process involves 
utilizing satellite data of varying resolutions, including IRS-1D PAN+LISS-III, Resourcesat-
1, 2, and 2A LISS-IV Mx, Cartosat-1 and 2S, alongside data from international satellites 
(Sentinel-1 \& 2, Pleiades, and Worldview) and aerial images to accurately pinpoint and 
categorize the landslides [2]. 
In recent times, object-based image analysis (OBIA) has gained prominence as a new standard 
in remote sensing and GIS. OBIA offers strong potential for precise identification of landslides 
and change detection in satellite imagery. This method has been increasingly utilized for the 
extraction of landslides and satellite-based change analysis. OBIA is an approach in remote 
sensing and geographic information systems (GIS) that focuses on analyzing images based on 
objects or segments rather than individual pixels. Unlike traditional pixel-based methods, 
OBIA groups pixels into meaningful objects that share similar characteristics, such as color, 
texture, shape, and spatial arrangement. This approach takes into account both spectral and 
contextual information, allowing for more accurate and contextually relevant analysis [3]. In 
landslide mapping using Object-Based Image Analysis (OBIA), various Machine Learning and 
AI techniques are harnessed for effective results. Algorithms like Random Forest and Support 
Vector Machine enable the classification of segmented objects into landslide and non-landslide 
categories based on spectral, textural, and contextual attributes. Image differencing and 
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Convolutional Neural Networks (CNNs) aid in change detection, identifying altered areas. 
Fuzzy Logic and Logistic Regression are used for landslide susceptibility mapping, integrating 
diverse criteria for assessment. Autoencoders and Mask R-CNN facilitate feature extraction 
and object segmentation, respectively. Multi-temporal high-resolution satellite images, digital 
elevation models (DEMs), geological maps, and land use data play vital roles in enhancing 
algorithms for landslide mapping through Object-Based Image Analysis (OBIA). These 
datasets empower various techniques: satellite images aid in detection and change analysis; 
DEMs contribute to susceptibility mapping; geological maps inform geological factors; and 
land use data influences susceptibility. The integration of these datasets enables algorithms like 
Random Forest, Support Vector Machine, CNNs, Fuzzy Logic, and Logistic Regression to 
better learn patterns and relationships, resulting in accurate and comprehensive landslide 
mapping. The Landslide Prone Zone Mapping relies on data obtained through Remote Sensing 
and GIS Techniques. Remote Sensing and GIS are prominent methods for mapping and 
categorizing landslides. Commonly, detection approaches employ pixel-based techniques for 
mapping using very high-resolution (VHR) satellite imagery before and after an event. Due to 
the advancements in Earth observation technology have led to the availability of bitemporal 
satellite images and Sentinel-2 optical images. These resources have proven invaluable in 
accurately identifying and extracting landslide occurrences. The increased accessibility of 
multi-temporal high-resolution satellite images (HRSI) has facilitated the acquisition of pre- 
and post-landslide event imagery. This has enabled the visual interpretation of these images 
from different time periods using tools like Google Earth, resulting in the creation of maps that 
highlight specific features. Google Earth Engine is a cloud-based platform that allows users to 
analyze and visualize geospatial data at scale [4]. 
II. LITERATURE REVIEW 
Landslide inventory can be prepared through various methods such as detailed geomorphologic 
studies, mapping from remote sensing data and topographic maps, historical archive studies. 
In this research, existing inventories and satellite images were used as the main source for 
obtaining a multi-temporal landslide inventory. Niraj et al., [5] explained the influence of the 
Normalized Difference Vegetation Index (NDVI) in the creation of Landslide Susceptibility 
Maps (LSMs) through GIS-based bivariate and multivariate statistical models. These models 
encompass techniques such as frequency ratio (FR), information value (IoV), multiple linear 
regression (MLR), and logistic regression (LR), utilizing a dataset of 108 training and 56 
testing landslide points along with ten causative factors. The accuracy of the resulting LSMs 
was notably highest in the case of the IoV model, both when NDVI was included and when it 
was omitted as a causative factor. This emphasizes NDVI's significant role in improving the 
predictive performance of LSMs, ultimately enhancing our ability to assess and manage 
landslide susceptibility effectively. 
Sangeeta et al., [6] discussed the combined influence of parameters linked to both rainfall and 
earthquake triggers on Landslide Susceptibility Zones (LSZ) was examined using a Geographic 
Information System (GIS)-based relative frequency ratio (RFR) approach. This methodology 
allowed for the assessment of how both rainfall and earthquake-related factors collectively 
contribute to the susceptibility of specific areas to landslides.  Chen et al., [7] introduces full 
convolution networks with focus loss (FCN-FL) for mapping historical landslides in regions 
with imbalanced samples. This approach employs an improved symmetrically connected full 



 

 

Semiconductor Optoelectronics, Vol. 42 No. 02 (2023) 
https://bdtgd.cn/ 

672 

convolution network and focus loss function to enhance feature analysis and minimize 
background loss impact, aiming to provide a robust solution for accurate landslide mapping.  
Thambidurai et al., [8] prepared landslide inventory map using a frequency ratio model, which 
involved establishing correlations between factors influencing landslides and historical 
landslide occurrences. Subsequently, the LSZ map was divided into five distinct susceptibility 
zones: very low, low, medium, high, and very high, representing varying levels of susceptibility 
to landslides. This classification provides a valuable visual representation of the regions' 
relative vulnerability to landslides based on the identified influencing factors and historical 
patterns. Sivakumar et al., [9] integrated various methods contributed to the accurate 
identification and mapping of landslide occurrences within the specified time frame. Creation 
of a landslide inventory from Sentinel-2 imagery specifically for the year 2020 utilizing the 
capabilities of Sentinel-2 imagery to provide a detailed inventory for the designated year using 
image processing techniques, mainly band ratio, Principal Component Analysis, and image 
classification techniques. Ghorbanzadeh et al., [10] introduced the rule-based approach to 
object-based image analysis (OBIA) was developed, utilizing probabilities generated by the 
ResU-Net model for accurate landslide detection. The ResU-Net model was trained using a 
diverse landslide dataset that incorporated inventories from multiple geographical regions, 
including the study area. Subsequently, the trained model was evaluated using a distinct testing 
area that wasn't part of the training dataset. During the OBIA phase, initial steps involved 
calculating land cover and image difference indices using multi-temporal images before and 
after the landslide events. This multi-step approach, combining machine learning with OBIA, 
aims to enhance the precision of landslide detection, ultimately contributing to improved 
hazard assessment and mitigation strategies. Jose et al., [11] presented a hybrid approach for 
landslide detection is presented, combining semi-automated techniques of Object-Based Image 
Analysis (OBIA) and a machine learning algorithm, specifically the Support Vector Machine 
(SVM). This method is applied to identify landslides in Eastern Hiroshima, Japan following 
the aftermath of the 2018 Typhoon Prapiroon which led to significant devastation. By 
synergizing OBIA and SVM, this approach aims to accurately delineate the landslide-affected 
regions. The combination of spatial analysis through OBIA and machine learning-driven 
classification with SVM is anticipated to offer improved accuracy in identifying landslides 
post-disaster, thus contributing to efficient disaster response and recovery efforts in the studied 
area.  
 
III. STUDY AREA 
The state of Karnataka, it starts from Dandeli in the north to Mangalore in the south and from 
the edge of the western coastline they go as far as Coorg and Madikeri. Karnataka is located in 
the south western region of India covering an area of 191,791 sq km approximately situated 
between 11.5° North and 18.5°' North latitudes and 74° East and 78.5°' East longitude. There 
are more than a dozen peaks whose heights is greater than 1,500m, among those Mullayanagiri 
is one of the tallest peaks in Karnataka with the height of 1923m. The Western Ghats region in 
Karnataka stretches across the southwestern part of the state, covering portions of multiple 
districts. It spans approximately 600 kilometres (370 miles) from north to south and varies in 
width from about 48 to 190 kilometres (30 to 118 miles). The region encompasses hilly and 
forested landscapes, valleys, rivers, and diverse ecosystems [12].  In Karnataka, the landslide 
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studies have been mainly focused in the Western Ghats region. The Western Ghats extend from 
Coorg (now Kodagu) District in the South to Uttar Kannada district in the north in Karnataka 
state covering an area of about 27855.45 sq. km. Landslide studies in the area have been carried 
out mostly along transportation corridors (National Highway \& State Highways) in the 
Western Ghats. The temporal data for most of these slides are not available as far as the study 
area is concerned. The study area is located on the eastern side of the Western Ghats and It has 
been generated using ArcGIS mapping software as shown in Figure 1. 

 
Figure-1: Study Area Map 

IV. DATA ACQUISITION AND IT'S SOURCES 
In Most recent studies, a wide variety of techniques have been used for extracting the spatial 
data for landslide inventory mapping.  Listed out a few techniques to get aerial photographs to 
predict areas prone to landslides. This section lists and describes the datasets used for analysis 
in this research and is depicted in Table 1. 
A. NASA Global Landslide Catalog (GLC): The Global Landslide Catalog (GLC) serves 
as a comprehensive repository of landslide occurrences, sourced from news reports, academic 
articles, and existing inventories. It encompasses a substantial collection of approximately 
60,000 landslides spanning the years 2007 to 2018. This valuable dataset is accessible to the 
public and is presented in either geospatial point or tabular data formats, offering a valuable 
resource for researchers, policymakers, and the general public to better understand and analyse 
the distribution and characteristics of landslides across various regions and time periods.  The 
NASA Landslide contains Catalog for both points and polygon shape file which contains 
around 60,000 landslide points across the world. Among these 39,623-landslide mapped are 
from points shape file and 20,055 were from polygon shape file [13]. These points and 
polygons shape files are used to map landslide points using GEE and ArcMap. Among these 
landslide Catalog, around 272 landslide points were mapped and visually interpreted through 
the map using ArcMap for our study area. 
 

TABLE 1: Data descriptions and source information 
Sl 
No 

Input Data Datatype Source 

1 Global Landslide 
Catalog 

NASA Cooperative Open Online Landslide 
Repository (COOLR) points and polygons 

https://gpm.nasa.gov/
landslides/data.html 

2 Geological Survey of 
India (GSI) with 
Bhukosh 

Multi-temporal images with Polygon and Points 
Shapefile 

https://bhukosh.gsi.go
v.in/Bhukosh/Public 
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3 Resourcesat-1 LISS-III 24-meter spatial resolution and a swath of 141 
km. 

https://bhuvan-
app3.nrsc.gov.in/data/
download/index.php 

4 IMS-1: Hyperspectral 
Imagery 

500-meter spatial resolution and swath of 128 
kms 

5 Cartosat-1 (All 
Versions) 

stereo data with a spatial resolution of 2.5m and 
10bit quantization 

6 Resourcesat-1 AWiFS 56-meter spatial resolution and a combined swath 
of 730 km achieved through two AWiFS cameras 

B. Geological Survey of India (GSI) with Bhukosh: Geological Survey of India has an 
enterprise portal with rich geo-scientific content, 'Bhukosh'-the spatial data portal and a 
geophysical data repository. This multi temporal images acquired are the information of 
historical landslides and this is resulting in 1260 landslide polygons for our study area. The 
Landslide dataset can be obtained as a shapefile(polygon) and then it was converted to Keyhole 
Markup Language (KML) Layer for visualization in Google Earth Engine. This information 
includes longitude, latitude, location, type of landslides, toposheet and so on. The Geological 
Survey of India (GSI) landslide data spanned seven districts within our study area. A total of 
1260 landslide occurrences were processed and transformed into a point shapefile including all 
attributes. This conversion process was facilitated using ArcGIS 10.3 software [14].  
C. Satellite Images: Mapping of landslide points based on Satellite images like IMS-1(17 
Bands), Resourcesat-2 and 2A LISS-III Ortho, Cartosat-1 DEM. These landslides are polygon 
shape file and then it is converted to points and digitized using ArcGIS. Validation of landslide 
inventory using points based on post-landslide images can be performed. The very high-
resolution images were obtained from the above Satellites using the coordinates points 
(longitude and latitude) for our study area. These data acquired in NRSC/ISRO Open data and 
product using Satellite Products at Bhuvan NOEDA Data Products [15].  
V. METHODOLOGY 
This research aims to construct landslide inventory map using satellite images including the 
existing inventories. The object-based image analysis was performed for the extraction of 
landslides for inventory mapping. In this section, the framework of the proposed Landslide 
Inventory Mapping using VHR remote sensing images is presented in detail as shown in Figure 
2. The Framework consist of three Phases: 1) Image Segmentation 2) landslide detection 3) 
Visual Interpretation 
The guidelines for automating the extraction of landslides were formulated following the 
Standard Operation Procedure (SOP) declared by the National Remote Sensing Centre (NRSC) 
[16]. These guidelines were customized for implementation within the eCognition software 
platform. The NRSC developed a dedicated ruleset within the eCognition environment, 
utilizing satellite imagery as the foundational data source for this extraction process.  
1. Image Segmentation 
Satellite image preprocessing using Google Earth Engine (GEE) involves preparing raw 
satellite data for analysis by removing noise, correcting atmospheric effects, and converting 
the data to appropriate formats. GEE provides a powerful platform to preprocess and analyze 
VHR remote sensing data [17]. The Preprocessing steps include the following in GEE: 
• Import the image collection: Load the satellite imagery as an image collection from the 
GEE catalog. You can filter the collection based on time, region of interest, and other 
parameters. 
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• Cloud masking: Clouds can obscure the satellite images and affect the analysis. Apply 
cloud masking algorithms to remove or minimize the impact of clouds. GEE has built-in cloud 
masking functions for various datasets. 
 

 
Figure-2: Architecture Diagram 

• Radiometric calibration: Some satellite images need radiometric calibration to convert 
digital numbers to radiance or reflectance values. The calibration depends on the sensor used 
in the satellite. 
• Atmospheric correction: Correct for atmospheric effects, such as scattering and 
absorption, which can distort the satellite data. GEE provides tools like the 
"ee.Algorithms.Landsat.TOA" for Top of Atmosphere reflectance correction. 
• Mosaicing and clipping: If your study area is large and covered by multiple satellite 
images, mosaic them together into a single image. Additionally, you can clip the image to your 
area of interest for efficient processing. 
• Band selection and indices calculation: Select relevant bands and compute spectral 
indices (e.g., NDVI, NDWI) for vegetation and water monitoring. 
• Data export: Once the preprocessing is complete, you can export the processed data for 
further analysis or visualization outside GEE. 
Once the cloud mask is derived for each image, the subsequent step involves computing the 
time series of the Normalized Difference Vegetation Index (NDVI). This is achieved by 
calculating the ratio of specific bands, enabling the extraction of meaningful vegetation 
information from the satellite imagery. 
NDVI ={NIR-R} / {NIR + R} 
The Normalized Difference Vegetation Index (NDVI) is a standardized metric ranging from -
1.0 to 1.0, calculated by comparing the near-infrared (NIR) and red (R) bands of satellite 
imagery. Elevated NDVI values, typically within the range of 0.6 to 0.9, signify lush and dense 
vegetation [18]. Intermediate NDVI values, around 0.2 to 0.5, may indicate sparse vegetation 
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or aging crops. Conversely, an NDVI  

 
Figure-3: NDVI Time Series for the Period 1998-2022 

below 0.1 might indicate exposed soil or rocky terrain. By analyzing these the NDVI time 
series for the period 1998 to 2022 is plotted with different NDVI values as shown in Figure 3, 
it becomes possible to differentiate between areas with and without landslides. The process of 
eliminating false positives or inaccurate landslide identifications can be enhanced through the 
utilization of NDVI (Normalized Difference Vegetation Index) values. NDVI serves as a 
valuable tool to distinguish between actual landslides and potential misclassifications, 
particularly in regions with vegetation. 
2. Landslide Detection 
This algorithm is used for change-detection with VHR satellite images for detection of 
landslides to construct LIM. This is a basic image processing technique that can be used for 
land use change detection with VHR remote sensing images. This Algorithm has three steps 
includes constructing adaptive region around a pixel, describing the shape of the region with 
direction lines and calculating the change-detection using discrete Fréchet distance 
A. Adaptive Region: The algorithm takes greyscale image (VHR) as input with some 
threshold parameters. This threshold determines the allowed variation in pixel values within 
the region. We iterate over each pixel in the image and generate an adaptive region around it 
using a sliding window approach. We start with the pixel at coordinates (1, 1) and generate the 
adaptive region around it. The process is repeated for all pixels in the image to generate 
adaptive regions around each pixel. 
B. Defining the Shape using Direction Lines: Defining the shape of an adaptive region by 
direction lines involves specifying the directions or orientations along which the region will 
extend from a central pixel. Assuming we want to define the shape of the adaptive region by 
horizontal and vertical direction lines, we can extend the region along these lines from a central 
pixel. By defining the shape of the adaptive region using horizontal and vertical direction lines, 
we ensure that the region extends in a consistent manner along these directions. The resulting 
adaptive region captures the surrounding pixels in both the horizontal and vertical directions 
relative to the central pixel. 
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C. Change-Detection using discrete Fréchet distance: The Adaptive Region Size Selection 
(ARSS) algorithm is used to calculate the change magnitude by measuring the distance between 
histogram curves and selecting an appropriate adaptive region size for each pixel. Calculate the 
distance between the histogram curves of Image 1 and Image 2 using a suitable metric, such as 
the discrete Fréchet distance (DFD). The DFD captures the similarity between the two curves, 
considering both shape and magnitude differences. Based on the calculated histogram curve 
distance, determine the appropriate adaptive region size for each pixel. The adaptive region 
size is typically chosen dynamically based on the magnitude of change.  
 
3. Visual interpretation using GEE and ArcGIS 
The visual interpretation process was applied to the landslide inventory data obtained from 
National Remote Sensing Centre (NRSC), Indian Institute of Remote Sensing (IIRS) under the 
Indian Space Research Organization, Bhukosh, and Bhuvan Satellite Products. The process of 
Landslide inventory mapping was carried out using the visual interpretation method, 
integrating remote sensing and Geographic Information Systems (GIS). The utilization of Very 
High-Resolution (VHR) optical satellite imagery further enhances the capability to identify 
distinct landslide areas.  The landslide inventory along National Highways and State Highways 
of Ghat Roads in Coorg, Dakshina Kannada, Udupi, Shimoga, and Chikkamagaluru Districts 
of Karnataka revealed that a significant portion of landslides were triggered by anthropogenic 
causes and heavy rainfall. The spatial distribution of these mapped landslides is presented in 
the final inventory map, resulting in a comprehensive and accurate representation of the 
impacted areas. According to the landslide inventory conducted along the National Highways 
and State Highways of Ghat Roads in Coorg, Dakshina Kannada, Udupi, Shimoga, and 
Chikkamagaluru Districts of Karnataka, a significant majority of the observed landslides 
appear to have been instigated by anthropogenic factors and intensified by heavy rainfall 
events. The resulting spatial distribution of these identified landslides has been consolidated 
and presented in the final landslide inventory map. 
 
VI. RESULTING LANDSLIDE INVENTORY 
Around 1532 landslides have occurred from last 24 years, most of the landslides are repeating 
or continuing every year, and out of 1532 landslides 366 landslides are still active from 1998 
to 2022 which are mainly concentrated in the southern and Western ghats region of Karnataka. 
Accuracy and quality of landslides are gradually changed from 1998 to 2022. Figure-4 shows 
landslides triggered in various parts of our Study Area which includes Kodagu, 
Chikkamagaluru, Shivamogga and Uttara Kannada District. 
Complete landslide inventory for Karnataka 
The landslide inventory for the study area containing 1532 confirmed landslides. Out of these 
1532 landslides 1260 were derived from the GSI and 272 landslides from the Global NASA 
Landslide Catalog points. Additionally, 48 new landslide points were identified using the VHR 
Satellite imagery available in Google Earth. Figure-5 shows the complete landslide inventory 
map of our Study Area. 
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Figure-4: Landslides triggered in various parts of our Study Area 
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Figure-5: Complete landslide inventory map of our Study Area 

Comparison of inventories 
The final landslide point dataset, 1580 were confirmed by two existing landslide inventories. 
163 landslide points were without an estimation for which no area could be determined in the 
images because the landslides were too small. It couldn't be identified in Google Earth or 
Resourcesat-2 LISS III satellite images due to the small size less than 3 m. Only 1369 out of 
1532 landslides were confirmed and mapped by GSI using automatic classifications. The 
remaining 48 landslide points were identified and confirmed by multi-temporal Google Earth 
images. However, it is not possible to obtain the correctness of the inventories due to various 
lack of independent features and confirmed inventory completeness of data. 
VII. CONCLUSIONS 
In this article, proposed landslide inventory mapping with VHR remote sensing images. These 
multi-temporal images are covered with dense vegetation and other objects which make very 
difficult to detect them using automatic image classification. Around 163 landslides were 
detected which can't be identified using HRSIs. The automatic classification method can be 
depended on the resolution of images. The collaborating approach of mapping requires 
consistent results and several satellite images obtained from different sources images were 
interpreted by using Google Earth images. This study shows that 1369 (86\%) out of 1580 
landslide points are confirmed and mapped as the final inventory mapping for the study area. 
So far, the final inventory can be seen in various satellite images, can be considered relatively 
complete for the entire study area using multi-temporal visual interpretation using GEE and 
ARCGIS tools. However, few landslide points are still missing in the final inventory for various 
reasons like poor resolution less than 3 m, dense vegetation and not possible to quantify the 
completeness of inventory map.  
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