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Abstract 

Alzheimer's Disease (AD), a horrible neurological disorder that affects millions of people 
worldwide. By utilising the ADNI dataset and Xilinx Vivado software for simulation and 
execution, this study suggests a novel approach for the early detection of Alzheimer's disease 
(AD). The enormous amount of neuroimaging and cognitive evaluation data in the ADNI 
dataset can be used to train and validate FPGA-accelerated AD detection algorithms. The 
project intends to improve the effectiveness and performance of the AD detection algorithms 
by integrating Vivado software, which is renowned for its abilities in designing, simulating, 
and implementing FPGA structures. The system may be able to accomplish quicker and more 
accurate AD detection through the modification and optimization of the selected AD detection 
algorithms for FPGA acceleration In order to increase the efficiency and throughput of the 
FPGA implementation, additional elements like memory management, pipelining, and 
parallelization are taken into consideration. By employing the ADNI dataset for an 
experimental demonstration of the FPGA-accelerated AD detection system, metrics like 
speedup, power consumption, and resource utilization can be compared to non-accelerated 
methodologies. The findings of the study indicate the potential advantages of using Vivado 
software to support early AD identification. 
Keywords: Alzheimer's disease,ADNI,Vivado Toolbox,FPGA,Xilinx,Hardware accelerators. 
 
1. Introduction 
      The cutting-edge software programme Vivado, created by Xilinx, has enormous potential 
for the early Alzheimer's disease (AD) detection market. Its capabilities go far beyond 
hardware integration, giving scientists and engineers a solid foundation for the creation and 
improvement of algorithms. A noteworthy aspect of Vivado is the High-Level Synthesis (HLS) 
tool, which enables researchers to design advanced machine learning algorithms specifically 
for AD detection. Researchers can process and analyse a wide range of AD-related data, such 
as neuroimaging scans, genetic data, and clinical data, by utilising Vivado HLS. Researchers 
may easily optimise their AD detection strategies because to the software's streamlined 
algorithm creation and optimisation processes. Furthermore, Vivado promotes algorithm 
portability, guaranteeing seamless platform integration and encouraging widespread 
implementation of modern AD detection methods. One of Vivado's key benefits is its capacity 
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to speed up the analysis of huge datasets, significantly cutting down on the amount of time 
needed for AD detection.  
For researchers looking into Alzheimer's disease (AD), the ADNI (Alzheimer's Disease 
Neuroimaging Initiative) dataset is a useful tool. It is a long-term study that gathers and makes 
available information on clinical, imaging, genetic, and biomarker data from people with AD, 
people with mild cognitive impairment (MCI), and healthy individuals. Pre-processed photos 
from the ADNI dataset are taken into account for the algorithm, which produces the input 
vectors. The ADNI (Alzheimer's Disease Neuroimaging Initiative) dataset is a significant 
resource for scientists studying Alzheimer's disease (AD). It is a long-term study that collects 
and disseminates data on clinical, imaging, genetic, and biomarker information from AD 
patients, MCI patients, and healthy persons. The algorithm that generates the input vectors 
considers pre-processed images from the ADNI dataset. 
Vivado is crucial in enabling researchers to utilise the potential of data analysis and machine 
learning algorithms in the context of Alzheimer's disease (AD) detection. The capabilities of 
Vivado can be used by researchers to investigate novel methods for AD detection and 
diagnosis. The software's substantial features, such as its user-friendly interface and wide-
ranging libraries, enable researchers to create and put into use sophisticated algorithms that can 
analyse and decipher a variety of AD-related data sources. The examination of complicated 
datasets is made easier by Vivado's data visualisation tools, which also help researchers find 
patterns, correlations, and potential biomarkers connected to AD.  Additionally, Vivado can be 
seamlessly integrated into current AD research workflows thanks to its compatibility with 
various software tools and frameworks, encouraging researcher collaboration and information 
sharing. Vivado remains at the forefront of the area of AD detection as it develops, giving 
researchers the resources and tools, they need to advance early diagnostic and intervention 
techniques. 
 
2. Literature review  
[1] In the paper published by M.J.N.Sampad, et al., the use of a field programmable gate array 
(FPGA) to enable live monitoring of single particle fluorescence analysis on an optofluidic 
device as part of a quick sample-to-answer method.The sensor has outstanding potential for 
use as a point of care (POC) diagnostic tool by validating real-time fluorescence detection of 
individual bacterial plasmid DNA at attomole concentrations. 
 
[2] In the paper published by M.Elnawawy et al., there is discussion of the chaotic dynamics 
that are observed in the spread of epidemics and illnesses, which have been supported by 
several constructed mathematical models. To the best of our knowledge, no attempt has been 
made to realise any of these chaotic models in analogue or digital electronic form. The effective 
FPGA implementations of three distinct viral spreading models and one illness progression 
model are discussed in this paper. First, parameter sensitivity is quantitatively examined for 
the spreading models of the COVID-19, Ebola, and influenza viruses as well as the cancer 
disease progression model. 
 
[3] According to the paper by N. Mccombe et al., even though machine learning approaches 
have the potential to enhance dementia diagnostic procedures, clinical practise frequently 
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struggles to adapt or apply research findings. Importantly, featureselection-based optimisation 
for dementia diagnosis has not yet taken the duration of administering diagnostic assessments 
into consideration. 
 
[4] As per the paper published by M. Seyedbarhagh et al., a biologically computational model 
that includes IP3 receptors (IPR), a plasma membrane pump, a sarcoendoplasmic reticulum 
Ca2+ ATPase (SERCA) pump, ryanodine receptor channels, and general membrane leak is 
represented by a multiplier-less digital design with the Coordinate Rotation Digital Computer 
(CORDIC) algorithm. 
 
After examining several research articles on diverse topics, we concluded that creating 
hardware accelerators for neural networks would be beneficial since it would greatly increase 
computing efficiency. When used as an accelerator, FPGA completes the task very quickly. It 
also makes it possible to put different diagnostic techniques into practice. The FPGA is the 
chosen architecture for such complicated neural analysis, despite the fact that initial training 
takes some time. FPGA may be implemented with many different devices and designed to work 
with a wide range of additional instruments. The effectiveness and efficiency of the machine 
learning models would rise with the introduction of neural networks. Different pre-processing 
methods have already been used in other articles. 
 
3. Methodology 
      This section provides more information on how to use the vivado toolbox for AD early 
detection. Vivado 2021 includes every element required for the simulation based on the 
relevant specifications. Results are obtained by taking vectors from the programme code and 
mapping them to the component parts. Different ML and hybrid combination methodologies 
are implemented, and after that, vectors are mapped to the design in the vivado. 
 
Figure 1's block diagram illustrates how the model operates; the MRI images used as input are 
taken from the ADNI website because it has standardised and verified data. Bias is provided 
before to model training, and the model is then trained. In the Vivado toolbox, the vectors are 
mapped and the design is obtained. 
 

 
Figure 1 Block Diagram 

 
One of FPGAs' key advantages is their distributed architecture, which enables efficient parallel 
processing and flexible execution of complex designs. In a distributed design, an FPGA is made 



 

 

Semiconductor Optoelectronics, Vol. 42 No. 02 (2023) 
https://bdtgd.cn/ 

696 

up of a large number of programmable logic blocks (PLBs) that are connected to one another 
by a network of programmable interconnects. Flip-flops and adaptable logic elements (CLEs), 
which can be programmed to perform certain functions, are present in each PLB. In general, 
the distributed architecture of FPGAs provides significant flexibility and scalability for the 
realisation of difficult digital designs. Real-time circuit reconfiguration, parallel processing, 
and efficient resource management are all made possible. FPGAs are useful for a range of 
applications, including high-performance computing, machine learning, image and video 
processing, and signal processing because to their characteristics. 
 
The distributed architecture of Field-Programmable Gate Arrays (FPGAs) has a number of 
advantages over the series and parallel architectures. The inclination for distributed architecture 
is supported by the following reasons: FPGAs with distributed architecture provide high 
degrees of flexibility and reconfigurability. The programmable interconnects and logic blocks 
allow for dynamic reconfiguration of the circuitry and make it simple for designers to create 
and modify complicated designs. This versatility is especially valuable in settings where design 
alterations or adaptations are regularly required. Multiple operations can be run simultaneously 
because to FPGAs' distributed architecture. The parallel execution of numerous design 
components is made possible by multiple logic blocks. 
 
This parallelism results in increased throughput and faster calculation when compared to a 
strictly series architecture. Resource Utilisation: The distributed architecture of FPGAs enables 
efficient utilisation of available resources. Instead of relying on a single processing element or 
a small number of parallel resources, FPGAs with distributed architecture can make the most 
of the available logic blocks and interconnects to maximise resource utilisation. As a result, 
overall performance increases and hardware resources are utilised more skillfully. Scalability: 
Distributed architecture offers scalability in terms of design complexity. FPGAs, which already 
include a large number of logic blocks, can be expanded to accommodate more complex 
designs. This scalability enables the development of larger, more sophisticated systems without 
sacrificing performance. 
 
The input to the architecture model is a vector with a size of (784,1) rows and columns that 
comes from the software algorithm of the machine learning and deep learning model. To 
normalise the data and take into account just rounded off values, bias is introduced. 30 layers 
make up the sub modal layers, while relu is the employed activation function. Different 
classifier approaches are simulated using Vivado. 
 
CNN approach: 
The early Alzheimer's disease diagnosis method based on CNN. Utilising the Vivado Toolbox, 
a full FPGA design and development environment, the CNN method is refined and 
implemented. The Vivado Toolbox provides high-performance hardware acceleration, 
enabling the real-time processing and analysis of medical images. The CNN model is trained 
using a substantial collection of brain images, including magnetic resonance imaging (MRI) 
scans. Deep learning techniques, feature extraction, and data augmentation are utilised in the 
training phase to find the complex patterns and biomarkers related to Alzheimer's disease. The 



HARDWARE ACCELERATED CLASSIFIER FOR EARLY DETECTION OF ALZHEIMER'S DISEASE 

 
697 

trained CNN model is then deployed on the FPGA using the Vivado Toolbox to enable quick 
and efficient inference. The design architecture of CNN is depicted in Figure 2, which 
comprises of logic gates connected to muxes in a pattern. A ROM for memory is connected, as 
well as shift registers. 

 
Figure 2 CNN architecture 

 
CNN + RF: 
The CNN and the Random Forest classifier are the two fundamental components of a hybrid 
model. The CNN component uses structural brain images to extract high-level characteristics 
because these images are known to show specific patterns associated with AD. The Vivado 
Toolbox can be used to develop and implement the CNN model in a thorough and efficient 
manner. The CNN model is trained using a substantial collection of brain images, including 
instances from AD and non-AD. A model's ability to generalise can be improved by using 
transfer learning techniques, such as improving a pre-trained CNN model (such as VGG16 or 
ResNet), which makes use of the knowledge gained from similar tasks. The trained CNN 
extracts distinctive features from the input pictures, which are subsequently fed into the 
Random Forest classifier. The Random Forest classifier, a potent ensemble learning technique, 
uses the gathered attributes as input and performs classification using a variety of decision 
trees. The Vivado Toolbox makes it simple to build and optimise the Random Forest method, 
enabling efficient resource utilisation and parallel processing on FPGA devices. To ensure 
correct model usage, the hybridised model uses registers for the random forest. Figure 3 shows 
design architecture of CNN+RF.  
 

 
Figure 3 CNN+RF architecture 
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CNN + SVM: 
Early Alzheimer's disease detection using a hybrid technique. The two main components of the 
model are a CNN for extracting features from images of the brain and an SVM classifier for 
categorising disorders. We describe the architecture of the CNN, including the number of 
layers, the size of the filters, and the activation methods. We also go over the SVM classifier 
and how it is trained within the Vivado Toolbox framework. To create a hybrid model for 
SVM, logic gates are coupled in patterns. Hybridization improves memory utilisation and logic 
analysis. Figure 4 shows design architecture of CNN+SVM.  
 

 
Figure 4 CNN+SVM architecture 

 
RNN: 
The RNN algorithm is implemented using the Vivado Toolbox, a powerful FPGA design and 
implementation environment. The specific FPGA device and resources are chosen with care, 
taking into account the constraints and architecture-imposed optimisations for efficient 
processing. The RNN algorithm and FPGA acceleration work together to expedite high-speed 
computations and parallel processing, enabling quick and accurate AD detection. During the 
training and validation phase, the dataset is split into training and evaluation sets. The model 
is trained using the appropriate loss functions, optimisation methods, and hyperparameter 
tuning to get the optimum performance. Performance measures including accuracy, precision, 
recall, and F1-score are used to assess the model's performance and ascertain its capability. 
Figure 5 shows design architecture of RNN. 
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.  
Figure 5 RNN architecture 

 
RNN + RF: 
In the hybrid method, we first use an RNN to simulate the temporal dependencies in the input 
data. RNNs' propensity for sequential data processing makes them excellent at detecting 
temporal trends. The RNN takes input sequences and learns the underlying patterns by using 
recurrent connections inside its architecture. The model can then collect information from prior 
time steps and incorporate it into the present prediction. Following the RNN stage, an ensemble 
of Random Forest (RF) models are trained using the hidden states or RNN outputs as features. 
A decision tree's classification predictions are integrated into the final classification using the 
RF ensemble learning technique. Strengths of RF include strong categorization capabilities and 
processing of high-dimensional data.The RNN-generated features are sent into the RF 
ensemble, allowing the RF to take advantage of the temporal data obtained by the RNN. The 
RF ensemble then performs additional classification based on these features, increasing 
accuracy and generalisation by utilising the variety of decision trees. Figure 6 shows design 
architecture of RNN+RF. 
 

 
Figure 6 RNN+RF architecture 

 
RNN + SVM: 
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The hybrid technique combines the discrimination capabilities of Support Vector Machines 
(SVM) and Recurrent Neural Networks (RNN) for temporal modelling. The RNN component 
gives the model the ability to distinguish trends and changes over time by locating temporal 
correlations in the input data. The SVM component uses the learned properties of the RNN as 
a classifier to distinguish between individuals with Alzheimer's disease and those who are 
healthy. The combination of RNN and SVM allows the model to utilise both local and global 
data, improving the accuracy of disease identification. Utilising its hardware design and 
acceleration capabilities, Vivado Toolbox is used to implement and optimise the hybrid model. 
Figure 7 shows design architecture of CNN+RF. 

 
Figure 7 RNN+SVM architecture 

 
4. Results 
            Due to its greater utilisation and inclusion of both serial and parallel features, 
distributed architecture is taken into consideration. Slice LUTs, the fundamental building 
blocks of the FPGA unit, are mostly used in the result analysis. Additionally, it informs us 
about the functions of other parts like flip-flops, latches, and muxes. On the basis of a utilization 
percentage, the optimum mode of classifier is taken into consideration.  

 
The results are with respect to the LUT utilization and memory consumption. The hybrid 
models show near same percentage for utilization. Here is a detailed report of the results 
obtained from the vivado simulation. The results contain on-chip power management which 
has dynamic and static division. Individual percentage is considered for logic, RAM coverage, 
digital signal processing and input output. BUFG is the global buffer which stores the output. 
RNN 
Figure 2 shows results obtained after RNN classifier simulation. 
 

 
Figure 2 Results of RNN 
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The post-synthesis and post-implementation results of the RNN are obtained with the same 
number of LUTs used in synthesis and implementation, a one-unit reduction in FF, and the 
same amounts of BRAM, DSP, IO, and BUFG. On-chip memory splits its power consumption 
between Dynamic and Static. Power consumption for signals is 34.589W, logic is 27.772W, 
BRAM is 1.907W, DSP is 147.568W, and I/O is 3.161W. 

 
RNN + RF. 
Figure 3 shows results obtained after RNN+RF classifier simulation. 

 

 
 

 
 
Results of RNN+RF's post-synthesis and post-implementation are obtained; 6895 LUT were 
used in synthesis and 6887 LUT were used in implementation; this decrease in LUT shows that 
RNN+RF is superior to RNN; FF is reduced by one in the implementation; and BRAM, DSP, 
IO, and BUFG are used the same in both. On-chip memory splits its power consumption 
between Dynamic and Static. Power consumption breakdown: Signals use 42.184W, Logic use 
28.066W, BRAM use 1.907W, DSP use 148.265W, and I/O use 3.160W.  
 
RNN + SVM 
Figure 4 shows results obtained after RNN+SVM classifier simulation. 

 
 

Figure 4 Results of RNN+SVM 
 
Results of RNN+SVM post-synthesis and post-implementation have been obtained; 6898 
LUTs were used in synthesis and 6889 LUTs were used in implementation; this reduction in 
LUTs demonstrates that RNN+RF is superior to RNN. In addition, FF is reduced by one in the 
implementation, and BRAM, DSP, IO, and BUFG were used the same in both phases. On-chip 
memory splits its power consumption between Dynamic and Static. Power consumption for 
signals is 41.771W, logic is 28.554W, BRAM is 1.907W, DSP is 148.406W, and I/O is 
3.160W. 

 
 

Figure 3 Results of RNN+RF 
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CNN 
Figure 5 shows results obtained after CNN classifier simulation. 

 

 
Figure 5 Results of CNN 

 
Results of post-synthesis and post-implementation for CNN have been obtained; 6890 LUT 
were used in synthesis and 6878 LUT were used in implementation. The decrease in LUT 
indicates that CNN code uses less LUT post implementation, which lowers power 
consumption. FF is also reduced by one in the implementation, and BRAM, DSP, IO, and 
BUFG are used the same in synthesis and implementation. On-chip memory splits its power 
consumption between Dynamic and Static. Power consumption for signals is 41.214W, logic 
is 28.437W, BRAM is 1.907W, DSP is 148.439W, and I/O is 3.160W. 
 
CNN + RF 
Figure 6 shows results obtained after CNN+RF classifier simulation. 
 

 
Figure 6 Results of CNN+RF 

 
The results of CNN+RF's post-synthesis and post-implementation phases have been obtained; 
6927 LUTs were used for synthesis and 6917 for implementation. The reduction in LUT usage 
indicates that CNN+RF code uses fewer LUTs after implementation, which lowers power 
consumption. FF is also reduced by one in the implementation, and BRAM, DSP, IO, and 
BUFG are used the same in both phases. On-chip memory splits its power consumption 
between Dynamic and Static. Power consumption breakdown: Signals use 41.141W, Logic use 
29.819W, BRAM use 1.907W, DSP use 147.658W, and I/O use 3.170W. 
 
CNN + SVM 
Figure 7 shows results obtained after CNN+SVM classifier simulation. 
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The results of CNN+SVM's post-synthesis and post-implementation phases have been 
obtained; 6908 LUTs were used in synthesis and 6889 LUTs were used in implementation. The 
decrease in LUT usage indicates that CNN+SVM code uses fewer LUTs after implementation, 
which lowers power consumption. FF is also reduced by one in the implementation, and 
BRAM, DSP, IO, and BUFG are used the same in synthesis and implementation. On-chip 
memory splits its power consumption between Dynamic and Static. Power consumption for 
signals is 42.686W, logic is 29.228W, BRAM is 1.907W, DSP is 148.709W, and I/O is 
3.160W. 
 
Based on the above results we can have an overall picture of the utilization percentage as shown 
in Figure 8 of each classifier model. 

 
Figure 8 Comparison of models 

 
We can clearly see from the table that most of the parameters remains same for all the models 
and LUT utilization percentage is differential factor. RNN model has least value of 12.74% 
and CNN+RF model has max of 13% utilization. It is to be noted that all the values need to be 
less than 100% to have a proper utilization. 
 
5. Conclusion 
       Hardware solutions that enable speedy and effective data processing allow for real-time 
analysis and decision-making. Early detection of AD typically requires processing enormous 
volumes of data, such as brain imaging or biomarker data, and hardware solutions are better 
able to handle the computational needs than software-based methods. Hardware solutions can 
be optimised for power efficiency for wearable or implantable devices used to monitor 
individuals who are at risk for AD over time. If these devices need to operate continuously on 
limited power sources, hardware optimisation can save energy usage. Each design was 
analysed and compared to the software component based on the LUT's utilisation percentage. 
 
 
 

Figure 7 Results of CNN+SVM 
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