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Abstract. Model predictive control (MPC) is a popular control method that uses real-time 
optimization problem solving to compute mathematical control actions. However, due to the 
risk of collisions and uncertainty in the operating environment, it becomes complicated to apply 
MPC when it comes to safety related decisions. This paper introduces an integrated solution 
for autonomous vehicles (Avs) in unknown environments, combining model predictive control 
and deep learning (DL) techniques to avoid collisions and dangerous objects. This solution 
uses deep neural networks to predict the accuracy and degree of requirements and calculate the 
cost and priority between tasks. By using different simulation examples, test to see the 
feasibility and stability of this integrated approach. 
Keywords: Model Predictive Control, Deep Learning, Neural Network, Autonomous Driving, 
Collision Avoidance. 

1 Introduction 
AVs are a new application of automation technology in the field of transportation. This is a 
vehicle that does not need a driver to control but is equipped with automatic control systems 
and sensors to recognize and respond to the surrounding environment. AVs can be used to 
transport passengers in cities, airports and other public areas. They can be controlled remotely 
or automatically on a fixed route with a pre-set speed and stroke. The use of AVs has many 
benefits such as reducing traffic accidents caused by human error, reducing waiting times for 
passengers, increasing the convenience and efficiency of public transport. However, to make 
the development successful, it requires support and investment from the authorities and 
manufacturers to ensure the safety and stability of this system in all conditions. weather events. 
AVs are equipped with sensors to detect conflicting environments and make travel and speed 
decisions based on this data. These sensors include LiDAR sensor, camera, radar and GPS. 
These systems create a 3D map of the surroundings and allow the vehicle to automatically 
adjust its course to avoid obstacles or hazards. To ensure the safety of passengers, AVs are also 
equipped with detection and observation systems and remote driver monitoring systems to 
ensure safe and efficient operation. In the event of an emergency, this system can interact with 
station staff or drivers remotely to handle the problem. In many countries around the world, 
governments and technology corporations are investing in the development of AVs in public 
transport such as cars, taxis or electric trains. They are becoming the cutting-edge trend in 
transportation technology and a measure of sustainable development in this field. 
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MPC is a technique in the field of automatic control, widely used in AVs to make decisions 
about the vehicle's actions in the future. MPC computes monitoring check actions for vehicles 
by optimizing a predefined cost function, with no limitations such as minimizing the error 
between actual locations of the vehicle and the target location. MPC calculates control actions 
to adjust speed, direction and strut between different driving modes, from automatic to manual 
mode. It calculates actions based on input and output constraints and model parameters, such 
as engine, traction, and other locomotion parameters. With features like model predictive 
controllers (MPCs), AVs can safely and efficiently maneuver when encountering difficult road 
situations, such as storing multiple vehicle information at the same time. This helps to increase 
safety and stability for users and reduce the risk of traffic accidents. However, to implement 
MPC for AVs, it is necessary to have complete and accurate operating models, real-time data 
recognition variables and some Powerful computing system to perform optimization solving. 
MPC integrated with DL model using LiDAR sensor is an advanced technology used in AVs. 
LiDAR measurements allow scanning of surrounding objects to be performed, generating 3D 
data points to create a detailed map of the environment. Deep neural network (DNN) model is 
used to analyze and extract information from LiDAR-generated data, helping AVs predict and 
deal with complex road situations, such as development or reverse direction. MPC is integrated 
to control the autonomous vehicle (AV) action switching and make minimal decisions about 
future action based on the data of the DNN. Combining these two technologies provides AVs 
with an intelligent control system that is able to predict and react quickly to reduce the risk of 
accidents and ensure the safety of passengers. 
Therefore, in order to successfully develop a MPC integrated with DNN modeling based on 
LiDAR measurements, a large and complete database is required training and tuning the DNN 
model, different LiDAR devices and sensors are required to get more ambient data, and 
powerful computation is required to implement the optimization solution. 

2 Related work 
With the development of society, AVs increasingly require a higher level of perfection, 
including the ability to keep lanes and automatically avoid obstacles. Therefore, more and more 
research is using different methods to control AVs. In document [1,2], filters are used to reduce 
noise in the input data and solve problems such as minimizing the deviations between the 
original position and the actual position of the AV. The method uses neural network models to 
predict the behavior of AVs and solve problems such as identity recognition and detection of 
potentially conflicting events in documents [3-6]. The decision and planning system helps AVs 
to make decisions and act in accordance with the surrounding environment, through the work 
of calculating the optimal path, choosing the appropriate speed and direction of movement in 
the vehicle [7-11]. The reinforcement learning method allows AVs to automatically learn to 
control and make decisions based on experiences accumulated through road runs in the 
literature [12,13]. In addition, model prediction method calculates future control optimization 
based on kinematics model to solve the stated problems such as collision mitigation and AV 
motion optimization practice [14-16]. Inheriting the above works, the paper develops MPC 
together with DNN model and LiDAR sensor, which helps to improve computational efficiency 
and security of the whole system. 
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3 Neural Network based Model Predictive Control Method 
3.1 Approach Overview 

Discrete-time controlled MPC involves optimizing a problem around a set of state values for a 
model, in order to achieve an objective defined target. The resulting sequence of control signals 
is used as input to the system factory for a short period of time (system time step), after which 
new state values are measured and the procedure is repeated again. MPC is applied in 
autonomous driving, which uses DL to avoid velocity-based collisions in unknown 
environments. Data from the LiDAR sensor is used to gather information about the position, 
size, and velocity of the obstacle. A set of DNN is used to estimate the exact ratio of the 
collision rate, which is used by the controller to slow down in areas with high collision risk. 
The cost of a collision is calculated based on the fact of the collision and in the direction of the 
potential hazard, determined using the contrast velocities between the AV and the obstacle, 
forming the collision cones for each major obstacle.  

3.2 Vehicle Modeling 
The geometrical structure of the AV is depicted in Figure 1. 

 
Fig. 1. Geometric structure of AV 

The model of the AVs is shown as follows [6,17]: 
 𝑃(𝑘 + 1) = 𝑃(𝑘) +  ∆𝑇 × 𝑅 × 𝑄(𝑘) (1) 

Where 𝑅 = ൥
cos 𝜃(𝑘) 0

sin 𝜃(𝑘) 0
0 1

൩; 

𝑃(𝑘), 𝑃(𝑘 + 1) are the positions of the autonomous vehicle at time 𝑘 and 𝑘 + 1. 
The position of AV described by (𝑋, 𝑌, 𝜃), LiDAR sensor is responsible for measuring and 
collecting data. 
 𝑃 =  [𝑋(𝑘), 𝑌(𝑘), 𝜃(𝑘)]் (2) 

and 𝑄(𝑘) = [𝑉(𝑘), 𝑊(𝑘)]்  
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ቐ

𝑋(𝑘 + 1) = 𝑋 + 𝑉 × 𝑐𝑜𝑠 𝜃 × 𝑇

𝑌(𝑘 + 1) = 𝑌 + 𝑉 × 𝑠𝑖𝑛 𝜃 × 𝑇
𝜃(𝑘 + 1) = 𝜃 + 𝑊 × 𝑇

 
(3) 

Where T is the sampling time. Suppose the desired trajectory of the Vehicle is: 
 𝑃௥ =  [𝑋௥(𝑘), 𝑌௥(𝑘), 𝜃௥(𝑘)]் (4) 

We have 
 

𝑃௥(𝑘 + 1) = 𝑃௥ +  ∆𝑇 × ൥
cos 𝜃௥ 0
sin 𝜃௥ 0

0 1

൩ × 𝑄 

= 𝑃௥ +  ∆𝑇 × ൥
cos 𝜃௥ 0
sin 𝜃௥ 0

0 1
൩ × ൤

𝑉௥

𝑊௥
൨ 

 

 
 
 
(5) 

in there 𝑄௥(𝑘) = [𝑉௥(𝑘), 𝑊௥(𝑘)]். 
 

ቐ

𝑋௥(𝑘 + 1) = 𝑋௥ + 𝑉௥ × 𝑐𝑜𝑠 𝜃௥ × 𝑇

𝑌௥(𝑘 + 1) = 𝑌௥ + 𝑉௥ × 𝑠𝑖𝑛 𝜃௥ × 𝑇

𝜃௥(𝑘 + 1) = 𝜃௥ + 𝑊௥ × 𝑇

 
(6) 

Tracking error 
 

ቐ

𝑋்ா(𝑘) = [𝑋(𝑘) − 𝑋௥(𝑘)] × 𝑐𝑜𝑠 𝜃்ா(𝑘) + [𝑌(𝑘) − 𝑌௥(𝑘)] × 𝑠𝑖𝑛 𝜃்ா(𝑘)

𝑌 ா(𝑘) = [𝑋(𝑘) − 𝑋௥(𝑘)] × 𝑠𝑖𝑛 𝜃்ா(𝑘) + [𝑌(𝑘) − 𝑌௥(𝑘)] × 𝑐𝑜𝑠 𝜃்ா(𝑘)

𝜃்ா(𝑘) = 𝜃(𝑘) − 𝜃௥(𝑘)

 
(7) 

From there we have: 
 

ቐ

𝑋்ா(𝑘 + 1) = 𝑋்ா × [𝑉ଵ − 𝑉௥ + 𝑌 ா𝑊௥] × 𝑇

𝑌 ா(𝑘 + 1) = 𝑌 ா × [𝑉ଶ − 𝑋்ா𝑊௥] × 𝑇

𝜃்ா(𝑘 + 1) = 𝜃்ா + [𝑊 − 𝑊௥] × 𝑇

 
(8) 

Where: 
 𝑉ଵ = 𝑉௥(𝑘) 𝑐𝑜𝑠 𝜃்ா(𝑘) (9) 
 𝑉ଶ = 𝑉௟(𝑘) 𝑐𝑜𝑠 𝜃்ா(𝑘) (10) 

AV moves by two wheels driving the right and left with the linear velocity of the two wheels 
respectively 𝑉௥, 𝑉௟. 
 

𝑉 =
𝑉௥ +  𝑉௟

2
 

(11) 

 
𝑊 =

𝑉௥ −  𝑉௟

2𝑏
 

(12) 

 
𝑅 =

𝑉௥ +  𝑉௟

𝑏(𝑉௥ −  𝑉௟)
 

(13) 

Where R is the turning radius and the surrounding is not clear with obstacles and targets. To 
design the controller, useful information is included including the distance and angle between 
the vehicle and the target, as well as the distance and angle between the vehicle and the nearest 
obstacle. Then, the observed model shows the following: 
 𝑂(𝑘) =  ൣ𝐻௧௔௥௚௘௧ , 𝜃௚ , 𝐻௢௕௦௧௔௖௟௘ , 𝜃௢ ൧

்
 (14) 

3.3 Deep learning based model for obstacle avoidance 
We explicitly represent the collision 𝑝௖௢௟௟௜௦௜௢௡ as information about the probability of a 

collision. Determining this is computed by a set of deep neural networks like the example in 
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[18], and the information is computed immediately when the MPC decides to plan. Each is a 
factor, as the medium is difficult to access during training and modeling over a long period of 
time. 
In this paper, the architecture of the network neural network can be represented as a fully 
connected multi-layer neural network, depicted in Figure 2. The input of the network consists 

of 4 nodes 𝑠 = (𝑠ଵ, 𝑠ଶ, 𝑠ଷ, 𝑠ସ) = ൫𝐷௧௔௥௚௘௧, 𝐷௢௕௦௧௔௖௟௘ , 𝜃௚, 𝜃௢൯ to pass the input information down 

to the next layers. The input layer is created by combining the measurement variables from the 
LiDAR sensor and the vehicle's current state parameters. All input values have been normalized 
to be in the range [−1, 1]. 
The neural network is used to predict the collision point and the 𝑝௖௢௟௟௜௦௜௢௡ performance. The 
first two hidden layers consist of 200 nodes, while the remaining hidden layers consist of 100 
nodes. The nodes in the neural network are activated by the RELU function, which is a common 
activation variable used in fully connected neural networks [18]. The output nodes have a value 
between 0 and 1, which corresponds to the screen and determines the 𝑝௖௢௟௟௜௦௜௢௡ collision. 
 
 

 
Fig. 2. Neural network structure with six layers. 

3.4 Deep learning Model Predictive Control 
Every time the MPC plans a new trajectory, the vehicle reads measurements from the LiDAR 

sensor. Points belonging to the obstacle object will be detected by the LiDAR sensor and 
indicated by blue dots in Figure 3. For each detected point, a circle 𝐶𝑖𝑟𝑐௞  will be detected 
created and centered at the corresponding point. These circles will be represented by the circles 
marked in Figure 3. If any of the points are above, shown by Figure 3, create a circle 𝐶𝑖𝑟𝑐௞ , 
title label will specify the best sample data format. If there is a collision within the optimization 
range, it will be 1, otherwise if there is no collision, the target label will be 0. The vehicle 
moved to, the measurement to the right of the LiDAR sensor has been read and the item label 
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will be reassigned to the description above. Note that the model will be trained, retrying from 
scratch at every new vehicle position, allowing the LiDAR sensor to be updated and optimized 
for step-by-step obstacle avoidance. 

 
Fig. 3. AV uses LiDAR sensor to scan obstacles 

4 Experimental Results 
Our aim was to demonstrate the results obtained from the offline learning phase in a 

simulated simulation environment using Gazebo [19] and OpenAI Gym [20]. We assigned a 
navigation task, where the autopilot needed to learn how to avoid obstacles in a large maze of 
randomly placed obstacles, wide paths, and 90-degree left/right angles. The simulation 
environment is used in Gazebo and rendered using the Erle-Rover platform, a Linux-based 
smart car powered by APM autopilot and with Robot Operating System (ROS) support [19], 
as could be show in Figure 4. 

Obstacles, paths and turns can be randomly generated in the simulated environment. All in 
all, we deploy 250 learning stages to train the neural network. Of these, the first 100 stages 
were used to train with a set of obstacles with a maximum total recovery length of 186 m. The 
remaining 150 stages are used for a different set of obstacles, paths and turns with a total track 
length of 146 m. 
Figures 5 and 6 depict simulation results for different scenarios with dense and cluttered 
environments. For dense environments, this is one of the problems self-driving cars have 
trouble dealing with. The starting and destination locations are shown with yellow rectangles 
and blue dots. The target starts without collision. Figures 5 and 6 show that the Erle-Rover self-
driving car successfully completed the tasks. 
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Fig. 4. Simulation in Gazebo with the blue area being the space monitored by the LiDAR sensor 

 
Figure 5. Obstacle avoidance in cluttered environments 
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Figure 6. Obstacle avoidance in dense environments 

 
Figure 7. Stick to the desired trajectory 
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Figure 8. Error in x-axis 

 
Figure 9. Error in y-axis 
From the results of Figure 7, we see that the self-propelled vehicle has followed the desired 
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trajectory. The error of tracking along the x and y axes is approximately zero Figure 8, 9. 
5 Conclusion 

In this paper, we present a solution that combines autonomous driving in an unknown 
environment, combining control prediction and deep learning techniques for obstacle 
avoidance. The obstacle avoidance goal is determined by the MPC objective function using a 
neural network. This method reduces speed in areas with obstacles, such as in bends or cones, 
where a high-impact novel speed determination determines the model's predicted change to be 
low. Many of these simulate each other and for different scenarios. Therefore, the stability and 
applicability of the automated driving method can be demonstrated. 
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