

Semiconductor Optoelectronics, Vol. 42 No. 1 (2023), 1215-1233
https://bdtgd.cn/

1215

ROBUST RECTILINEAR STEINER TREE CONSTRUCTION: A MULTI
OBJECTIVE OPTIMIZATION USING GENETIC ALGORITHM

Chittaranjan Mohapatra1, 2 and Nibedita Adhikari1

1Utkal University, Vani Vihar, Bhubaneswar, Odisha, India
2Silicon Institute of Technology, Patia, Bhubaneswar, Odisha, India

nibedita.cs@utkaluniversity.ac.in

Abstract. The genetic algorithm is used to generate an optimal rectilinear Steiner tree with no
obstacle overlap. To accelerate the algorithm, for the initial solution, Delaunay Triangulation
is used to generate an adjacency list of neighbour nodes in less time. A multiple objective
optimization technique is developed to obtain a Robust Rectilinear Steiner Tree (RRST).The
primary purpose is to achieve sufficient reduction in wire-length by connecting two pins
without any obstacles. Some pins are difficult to reach due to major obstacles and become
outliers. The second objective is to add fewer non-pins in order to connect the outliers. A
heuristic is used to link the outlier pins while minimising the count of non-pins. The third
research goal is to decide uopon the minimum possible Steiner points by using common path.
For its cutting-edge nature, this method can be very well applied to (Very Large-Scale
Integration) VLSI physical design routing.

Keywords:Rectilinear Steiner Tree, VLSI, Routing, Delaunay Triangulation, Obstacle,
Genetic Algorithm, Optimization.

1 Introduction

One of the key elements that can significantly help with the optimization of VLSI circuit layout
is routing, which is susceptible to losses of energy and higher routing cost. The use of
Rectilinear Steiner Minimal Tree in VLSI routing was crucial in constructing the rectilinear
route for power and clock data. The available literature has solely been focused with obstacle
avoidance and the minimum wire-length achievable. However, with fewer Steiner points, a few
possible non-pins can further reduce wire length of an Obstacle Avoidance Rectilinear Steiner
Minimal Tree. Such a tree may have some detour paths that increasethe wire length. The
present study's major focus is to build a Robust Rectilinear Steiner Tree (RRST) applying a
multi-objective optimization approachthat produces least possible wire-length, non-pins and
Steiner points, with zero overlap.

The paper is organized as follows: the Section 2 gives a review of the history and related works
that have been finished so far. In the Section 3, RRST building methods were proposed. The

Semiconductor Optoelectronics, Vol. 42 No. 1 (2023)
https://bdtgd.cn/

1216

results and comparative analysis arediscussed in theSection 4. The conclusion statements are
presented in Section 5.

2 Background and Literature Survey

In any VLSI circuit design the pins are connected in a rectilinear path in order to consume less
power and minimum space. This rectilinear path is termed rectilinear Steiner tree. The research
on the circuit design reveals that the Steiner tree should be a minimal one. The following
section describes Steiner concepts and various existing research works on it.

2.1 Rectilinear Steiner Minimal Tree (RSMT)

If 𝑃 is a collection of 𝑛 points, locate a set 𝑆 of Steiner points that minimizes a rectilinear path
over 𝑃 ∪ 𝑆 = {𝑝ଵ, 𝑝ଶ, … , 𝑝௡, 𝑠ଵ, 𝑠ଶ, 𝑠ଷ, … . , 𝑠௟}. An 𝑅𝑆𝑀𝑇 edge cost is the distance between its
ends, and 𝑅𝑆𝑀𝑇′𝑠 cost is the total of its edge costs in Manhattan distance. In a VLSI layout,
the wiring cost between two pins 𝑝௜ 𝑎𝑛𝑑 𝑝௝ is typically modelled as an edge 𝑒௜௝which is

calculated based on the 𝑥and 𝑦 coordinates of the pin in the layout, as shown in Equation 1.

𝐶𝑜𝑠𝑡൫𝑒௜௝൯ = ฮ𝑥௜ − 𝑥௝ฮ + ฮ𝑦௜ − 𝑦௝ฮ

(1)

Every edge in an 𝑅𝑆𝑀𝑇 is a route between the two end points made up of one or more
alternating horizontal and vertical segments.

A Minimum Spanning Tree (MST) and RSMT are portrayed by Robins and Zelkovsky for the
same point set in the Manhattan plane as seen in the Fig. 1[27].

Figure 1: (a) MST (b) RSMT where solid dots are pins in VLSI Circuit

2.2 Related Work

There are various ways to solve a Steiner Tree problem, including branch and bound solutions,
dynamic programming-based methods [24, 11]. A powerful search strategy of Steiner point
may be effective for solving various Steiner Tree problem. A swap vertex method for
neighborhood search is established by Fu et al. to improve quality of an initial MST [3]. The
method exchanges a vertex with another and reconstruct the MST. A heuristic is designed to
avoid recurrence of similar moves and to focus the searching to suitable search areas. However,
the complexity of the method makes it less affordable.

To enhance the optimal assurance, an advanced Steiner point selection is developed by Liu et
al [17]. After the initial solution, the line segment of a 2D U-formed pattern is replaced with a

ROBUST RECTILINEAR STEINER TREE CONSTRUCTION: A MULTI OBJECTIVE OPTIMIZATION USING GENETIC
ALGORITHM

1217

group of line segments for maximum connected component to determine the optimum Steiner
points. Some of the work has been done on obstacle avoidance Steiner tree. The layout of the
gates and macros areas, can be a connection hurdles. However, it has no effect on the
interconnection path between pins. An Obstacle aware non-Manhattan distance-based routing
algorithm is proposed by Ghosal et al [4]. This type of routing is called X Architecture based
routing which lowers the count of Steiner points which results in enhance chip performance.
The algorithm can be improved if obstacle aware process can be applied at the time of
construction of the MST.

Lin et al. constructed an obstacle avoidance spanning tree by transforming the slant edge to
rectilinear edges and introduced Steiner points [15]. This spanning tree was polished in three
stages: the overlap edge was removed first, followed by the redundant node, and lastly the U-
shaped pattern was refined. They claimed a maze routing based obstacle avoidance rectilinear
Steiner tree [16]. This method was divided into three stages: selecting Steiner points, ripping
up Steiner points, and rebuilding Steiner points. To obtain an optimal collection of Steiner
points, the second and third steps were repeated.

Next Pajor et al. proposed a Guarded Multi-start algorithm that was implemented on a branch
and bound routine [24]. This was a three-pass approach, the first pass used breadth-first search
(BFS) to find a set of Graph Cut and its arcs. The other passes traversed the set and perform an
augmentation by reducing the residual capacity of each arc. Nath et al. employed Gradient
Descent and Particle Swarm Optimization in a mixed meta-heuristic optimization method [22].
In a circular sequence, PSO served as the algorithm's global search component, and gradient
descent serves as the algorithm's local search component. Even though it requires time to finish,
it always discovered the best solution. Kundu et al. included a Pseudo Boolean satisfy-ability
(PB-SAT) model for producing a rectilinear Steiner tree that met all of the specified PB-SAT
requirements [14].

Guo et al. proposed a Divide-and-conquer strategy based method obstacle avoidance Steiner
tree where it divided the initial solution to specific number of vertices and merge them with
Physarum-inspired routing algorithm to get the refined solution [5]. Huang et al. generated an
initial solution whose information were stored in a Lookup table [8]. Then it generated an
Obstacle avoidance Steiner tree by considering the rectangles corner points which was refined
using a heuristics method.

Guo et al. also presented a GPU-based RSMT version of the FLUTE method for large-scale
datasets [6]. The decomposition procedure employed a parallel breadth-first search (BFS)
algorithm. A net was partitioned into two sub-nets at an edge, whose end points acted as a
common pin. This edge was used as a bridge to combine solutions and retain the relations of
sub-nets within the net. Another GPU version based on the KMB algorithm tried to make this
technique more efficient by utilizing CUDA [21].

Steiner Tree problems are solved using heuristic algorithms based on the concept of combining
the Dijkstra and Prim's algorithms to determine the shortest route by Tran et al. [28]. Zhang et

Semiconductor Optoelectronics, Vol. 42 No. 1 (2023)
https://bdtgd.cn/

1218

al. proposed a methodology for iteratively reducing any detour connections by improving the
pre-solution Steiner point candidate until the quality is optimum [30]. An example of a detour
connections to an optimal connection is shown in the Fig. 2(b)–(d). Hu et al. proposed a
heuristic for construction of rectilinear Steiner tree based Ant Colony Optimization. However
it was further enhanced while considering obstacles [7].

Figure 2: Detour Path Elimination

To build an obstacle avoidance Steiner tree, a particle swarm algorithm and a union find data
structure were used by Liu et al. [18]. Joshi and Thakur devised an on-chip routing method
combining the Genetic algorithm and the Cuckoo search algorithm [13]. Both pieces of work
can be used to build the Manhattan Steiner tree. Zavoianu et al. approached an evolutionary-
based optimization paradigm as multi-objective evolutionary algorithms [29]. This work can
be further enhanced for hybridization with a discretization of the design surface.

There are few studies performed on the minimum possible Steiner points. In case of an obstacle
avoidance Steiner tree, it is still a huge demand to connect outlier nets including some non-
pins. A study on the inclusion of reduced number of non-pins is also another challenge in
obstacle avoidance Steiner tree. A Steiner tree with less number of non-pins and Steiner point
results in an optimal wire-length which can be of utmost importance in VLSI physical design.

3 Proposed Method

This section describes the suggested RRST approach which is created in three stages. By
avoiding obstructions, the first phase provides an initial solution that generates a rectilinear
Steiner tree of the pins. This step may fail to build the optimal Steiner tree due to significant
barriers in the path between certain pins known as outliers. The second step finds these outliers
and adds some non-pins to create a plausible path to the outliers. The final RRST is created in
the third stage using a genetic algorithm. The mechanism of these three stages are described in
detail below.

ROBUST RECTILINEAR STEINER TREE CONSTRUCTION: A MULTI OBJECTIVE OPTIMIZATION USING GENETIC
ALGORITHM

1219

3.1 Rectilinear Steiner Tree Construction

For any set of points a Minimum Spanning Tree can be produced in less time if Delaunay
Triangulation is used instead of complete graph [20]. At first, an edge-list is generated using
Delaunay Triangulation graph. These edge-list are inserted into a Min Priority Queue. Then
Find-Union disjoint data structures are used to generate the RMST by using rectilinear distance.
The idea is to select an edge with minimum cost, provided that edge is not facing any obstacles.
When one edge is popped out the Min Priority Queue, it checks, whether it faces any obstacles
or not. If a Steiner point between two vertices, falls on an obstacle then it is discarded.

Figure 3: Choice between two Points

In this study, it is assumed that there are three possible choices for a Steiner point, as illustrated
in the Fig. 3. If option 1 falls within an obstacle zone, option 2 is used. If both options land in
an obstacle region, the path is deleted. If the pins are linear and no Steiner point is required,
the third option is used. If any of the options is available, it is determined whether the path
passes through any obstacles. If the edge does not come into contact with any other path or
impediment, the path is clear and the pins are linked.

Algorithm 1: Obstacle Avoidance Rectilinear Steiner Tree

Input: Set of Pins 𝑃 and Obstacles 𝑂
Output: Obstacle Avoidance Rectilinear Steiner Tree
1. 𝐸 = 𝐷𝑒𝑙𝑎𝑢𝑛𝑎𝑦 𝑇𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑡𝑖𝑜𝑛 (𝑃)
2. 𝐶𝑟𝑒𝑎𝑡𝑒 𝑎 𝐺𝑟𝑖𝑑 𝐴 = 𝑧𝑒𝑟𝑜𝑠(𝑥௠௔௫ , 𝑦௠௔௫)
3. 𝑆𝑒𝑡 𝐴[𝑖][𝑗] = ∞ 𝑤ℎ𝑒𝑟𝑒 𝑖, 𝑗 ∈ 𝑂
4. 𝑓𝑜𝑟 𝑣 ∈ 𝑃 𝑑𝑜
5.

𝑀𝑎𝑘𝑒𝑠𝑒𝑡(𝑣)

6. 𝑒𝑛𝑑 𝑓𝑜𝑟
7. 𝑄 = 𝑀𝑖𝑛𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑄𝑢𝑒𝑢𝑒(𝐸)
8. Cost=0
9. 𝑤ℎ𝑖𝑙𝑒 𝑄 𝑑𝑜
10. 𝑒(𝑢, 𝑣) = 𝐷𝑒𝑙𝑒𝑡𝑒(𝑄)
11. 𝑖𝑓 𝐹𝑖𝑛𝑑(𝑢) ! = 𝐹𝑖𝑛𝑑(𝑣) 𝑡ℎ𝑒𝑛
12. 𝑠 = 𝐹𝑖𝑛𝑑 𝑆𝑡𝑒𝑖𝑛𝑒𝑟 𝑃𝑜𝑖𝑛𝑡(𝑢, 𝑣)
13. 𝑖𝑓 𝑠 ∈ 𝐴 𝑤ℎ𝑒𝑟𝑒 𝐴 ≠ 0 𝑡ℎ𝑒𝑛
14. 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒
15. 𝑒𝑛𝑑 𝑖𝑓
16. 𝑖𝑓 𝑒(𝑢, 𝑣) 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 𝑎𝑛𝑦 𝑝𝑎𝑡ℎ 𝑎𝑛𝑑 𝑠 ∉ 𝐴 𝑤ℎ𝑒𝑟𝑒 𝐴 > 𝑎𝑛𝑑𝐴 < ∞ 𝑡ℎ𝑒𝑛
17. 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒
18. 𝑒𝑛𝑑 𝑖𝑓
19. 𝑖𝑓 𝑒(𝑢, 𝑣) ∈ 𝐴 𝑤ℎ𝑒𝑟𝑒 𝐴 == ∞ 𝑡ℎ𝑒𝑛

Semiconductor Optoelectronics, Vol. 42 No. 1 (2023)
https://bdtgd.cn/

1220

20. 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒
21. 𝑒𝑛𝑑 𝑖𝑓
22. 𝑈𝑛𝑖𝑜𝑛(𝑢, 𝑣)

23. 𝐶𝑜𝑠𝑡 = 𝐶𝑜𝑠𝑡 + 𝐶𝑜𝑠𝑡௘(௨,௩)

24. 𝑒𝑛𝑑 𝑖𝑓
25. 𝑒𝑛𝑑 𝑤ℎ𝑖𝑙𝑒
26. 𝑟𝑒𝑡𝑢𝑟𝑛 𝑇𝑟𝑒𝑒

A grid is crucial in the obstacle avoidance procedure because it keeps track of the path and
barriers. The usage of a grid lowers the time complexity of path search to 𝑂(1). Its proof is
provided in Theorem 1. The grid is a maximum-sized matrix comprising the 𝑥 and 𝑦
coordinates of the provided set of pins. Initially, all values are set to zero, and the obstacles'
locations are filled with ∞. If an edge's route consists entirely of zeros, then it is available. If it
is non-zero and not ∞ and falls linearly over another, then it is also made available. If the path
consists of ∞, then the path faces obstacle and discarded. If a path is available and its end points
belong to separate sets, then a union operation is performed. The total cost is calculated when
each edge is added to the tree during union operation. If a path repeats, it considers once only.
Finally, this method returns the Obstacle Avoidance Rectilinear Steiner Tree that includes the
cost of the tree, its nodes and list of edges. The Algorithm 1 returns this rectilinear Steiner tree
of all pins by avoiding Obstacles as described.

Theorem 1: If 𝑃 is a set of 𝑛 pins in a chip with m obstacles, and then all pins can be connected
in a rectilinear path in 𝑂(𝑛 𝑙𝑜𝑔 𝑛) time without intersecting any obstacle.

Proof: A set of edges E can be generated by applying Delaunay Triangulation to get the
relationship among 𝑛 pins. According to Raza [26], any triangulation of P has (2n − 2 − k)
triangles and (3n − 3 − k) edges if all pins are in a plane and k pins are on the boundary of the
convex hull of P. This yields a linear number of edges, i.e. |E| ≈ O(n).

A min-heap based priority queue is used to store the list E. It returns the minimum distance
edge in 𝑂(𝑛 𝑙𝑜𝑔 𝑛) times [2]. A union and find disjoint data structures is used to connect all
pins. The number of executions of the dis-joint data structures depends on the number of edges
in the priority queue [2]. That is O(E) ≈ O(n) time.

A grid matrix with the largest value of all pins x and y coordinates is constructed, and all values
are set to zero. This takes θ(1) time. The values of grid are set to ∞ in the areas of obstacles.
For m obstacles this will take O(m) times. If no path intersects an obstacle, two pins are
connected. This intersection test involved checking the content of a few columns in a certain
row. If 𝑗 columns in a row are to be tested, this can take O(j) times. So, the total time complexity
of Rectilinear Steiner Tree Construction in Algorithm1 is O(n log n) times.

ROBUST RECTILINEAR STEINER TREE CONSTRUCTION: A MULTI OBJECTIVE OPTIMIZATION USING GENETIC
ALGORITHM

1221

3.2 Outlier Detection and Connection

Figure 4: Outlier Pin at x=115 y=481 in IND5

The outlier pins are the pins that do not have a direct path to their nearest pin dueto Obstacles.
The Fig. 4 shows an outlier in IND5 benchmark instance. A heuristics is designed to detect
outliers and connect them with its nearest pin. It lowers the execution time of the RRST, the
wire length and the number of Steiner points. The procedure of the heuristic is described in
Algorithm2. To detect outliers, an Obstacle Avoidance Rectilinear Steiner Tree must first be
constructed. Therefore, this tree is the input to the Algorithm 2.

The first step is to find the disconnected components. Then, a random leaf pin 𝑣 is chosen
whose degree is either 1or 0. Another nearest pin 𝑢 is calculated from remaining leaf pin of
other component sets. The leaf pins 𝑣 and 𝑢 are supposed to be the border locations of two
linked components, and the candidate pin to bridge two connected components. A connected
component may have a single node with degree 0, therefore it is also taken into account.

Algorithm 2: Outlier Detection and Connection Algorithm
Input: Obstacle Avoidance Rectilinear Steiner Tree
Output: Modified Obstacle Avoidance Rectilinear Steiner Tree
1. 𝑖𝑓 |𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠| > 1 𝑡ℎ𝑒𝑛

2.

Get a outlier leaf nodes 𝑣 where node.degree == 1 or node.degree ==
0

3. Find the nearest leaf nodes 𝑢 to the outliers
4. Determine the obstacle across the pin 𝑣 and 𝑢
5.

Select the bottom-left and upper right corner points of the obstacle

6.

Create a new set of points𝑃௡௘௪= all pins + the corner points as non-
pin

7. 𝑒𝑛𝑑 𝑖𝑓
8. Use Algorithm 1 with the 𝑃௡௘௪
9. Remove all edges having a leaf non-pin as an endpoint from the tree
10. return Modified Obstacle Avoidance Rectilinear Steiner Tree

Semiconductor Optoelectronics, Vol. 42 No. 1 (2023)
https://bdtgd.cn/

1222

The obstacles between 𝑣 and 𝑢 are identified and their bottom-left and upper-right corners are
added based on a diagonal location of 𝑢 and 𝑣. These two corners are known as non-pins. A
new set of points are formed by adding these non-pins to the set of pins. The Algorithm 1 is
called again to obtain a modified Obstacle Avoidance Rectilinear Steiner Tree by providing the
new set of points as its input.
The result of the IND5 benchmark after adding the non-pins to the set of pins is shown in the
Fig. 5. This strategy ensures that a solution in the initial population is a connected component
while also introducing some redundant edges R1 and R2 as shown in Fig. 5. These edges have
a leaf non-pin as an end point. So these edges can be easily identified and removed because
they are not required to connect two pins.

Figure 5: Connected Outlier Pin of IND5 Benchmark Data

3.3 RRST

The proposed RRST is an obstacle avoidance Steiner tree the produces an optimal wire-length
considering various situation. This section defines the objective function and a genetic
algorithms that fits Steiner tree problems. The algorithm finally output a connected optimal
Steiner tree without obstacles.
Problem Formulation

The Obstacle Avoidance Rectilinear Steiner Tree may have some detour paths, as the choice
of path is system determined when it comes across an obstacle. These path can be enhanced
further with some optimization kind of algorithm. In this section a genetic algorithm based
optimization mechanism is used to arrive at an optimal wire-length of the tree.
Let 𝐸 be the set of possible edges and 𝑂 be the set of obstacles {𝑜ଵ, 𝑜ଶ, … , 𝑜௠}, then the
optimization task to construct minimum 𝑐𝑜𝑠𝑡(𝑇) having a minimal path can be defined in
equation 2.

ROBUST RECTILINEAR STEINER TREE CONSTRUCTION: A MULTI OBJECTIVE OPTIMIZATION USING GENETIC
ALGORITHM

1223

min 𝑐𝑜𝑠𝑡 (𝑇) = ෍ 𝑒௜௞

௘೔ೖ,௘ೖೕఢ ா

+ 𝑒௞௝

(2)

Subject to
∀𝑠௞ ∉ 𝑂,
 𝑒௜௞, 𝑒௞௝ ∩ 𝑂 = ф,

|𝑆| < 𝑛 + 𝑚 ∗ 𝑚

In Equation 2, sk is a Steiner point constructed to link two pins pi and pj, while eik and ekj are
the horizontal and vertical edges between the two pins. The main objective is to minimize the
wire-length as 𝑐𝑜𝑠𝑡(𝑇) such that no Steiner point falls inside obstacle, none of the edges 𝑒 ∈

𝐸 intersects any obstacles and the total number of Steiner points created, as well as the number
of non-pins included to connect some outliers, should be kept as low as possible. Furthermore,
the essential aspect of the optimization is analyzing the recurring path only once, allowing the
overall Wire-length to be reduced.

The Genetic Algorithm
The concepts of natural evolution are the foundation of the stochastic search method known as
the genetic algorithm (GA). Individuals in a community fight with one another for survival in
nature as the population evolves. Greater fitness allows offspring's to live, while lesser fitness
results in death. In GA, fitting chromosomes (solutions) are more likely to take part in genetic
operators and pass on their genes to the next generation. Genetic operators aid GA in both
exploring new areas of the search space and utilizing the most hopeful regions of the search
space. Following is a discussion of the suggested GA structure, including Encoding, Initial
Population Generation, Fitness Function, Selection, Crossover, Mutation, Evaluation, and
lastly Updation.
Encoding: A Steiner tree is represented as a chromosome (solution) of the proposed GA. An
edge-set encoding method [25, 23] is used to represent a solution. This encoding offers high
locality, is heritable and is adaptive to problem-specific genetic operators. An edge is
augmented with weight, associated points, their Steiner point, and Steiner choice. All edges are
assumed to be obstacle-free edges because each solution is an Obstacle Avoidance Rectilinear
Steiner Tree.

Generation of initial solutions: All feasible Obstacle Avoidance Rectilinear Steiner Trees are
generated by applying random Steiner point choice between two points in Algorithm 1. The
population set 𝑇 has 𝑠 solutions.

Fitness Function: The fitness function computes the total cost of the tree with less number of
Steiner points without any obstacles. This computation is incorporated with the generation of
each solution. This is same as the objective function in equation2.

Selection: The selection is a crucial process in a GA. The binary tournament selection method
and roulette wheel selection are used in this phase. First, two solutions are selected randomly

Semiconductor Optoelectronics, Vol. 42 No. 1 (2023)
https://bdtgd.cn/

1224

from the population, then a tournament is performed, and the winner is selected for the mating
pool. Similarly, half of the population is generated with a binary tournament solution, and the
rest is generated using the roulette wheel selection method. The mating pool is updated in the
Initial Population.

Crossover: The crossover rate is considered as 1.0, 0.9 and 0.8 for sensitivity analysis of the
results obtained from GA. A heuristic crossover technique is used in the proposed algorithm.
Two trees are selected randomly and input for the cross over operation. The common edge
between these two trees are added to the child tree by using the union-find set data structure.
The remaining edges of both trees are chosen at random and appended to the new spanning tree
using the union-find set data structure. A clear picture of crossover operation is shown in the
Fig. 6. Here E1, E2, E3, E4, E5, E6 are the edges of the two parent trees which are not common.
Out of theses six edges, three edges E1, E3, E4 are selected to generate a child tree. Here union-
find disjoint data structure is used construct the tree. During the child tree generation the total
cost and number of Steiner points are calculated. This child tree may be a solutions that can
survive for next generation.

Figure 6: Crossover Operation of two Chromosomes

Mutation: In Mutation operator edge transformation technique is applied. To ensure that the
spanning tree has been connected, an arbitrarily selected spanning tree solution is chosen, and
an edge is deleted and replaced with another randomly selected edge. In the Fig. 7 the mutation
operation is explained in details. One edge E1 is randomly selected in a random solution as
parent and using union-find data structure strategy a child spanning tree is constructed by
adding edge E2 to it.

Figure 7: Mutation Operation of a Random Chromosome

Evaluation and Updation: The best solution is selected from the initial population prior to the
start of evolution. The total cost and the number of Steiner points of a new solution are

ROBUST RECTILINEAR STEINER TREE CONSTRUCTION: A MULTI OBJECTIVE OPTIMIZATION USING GENETIC
ALGORITHM

1225

compared with the best solution. If the new one has a better solution, then the population is
updated with the new one by replacing the tree with the largest cost.
The complete GA framework of the proposed approach is mentioned in Algorithm 3. The
Crossover and Mutation operation pseudo-codes are specified in Algorithm 4 and Algorithm 5
respectively.

In Algorithm 3, T1, T2, . . . ,Ts are chromosomes of the population with size s and Tb stores the
minimum cost among the solutions of the population. A mating pool is created using the binary
tournament and roulette wheel selection method. Then the population is updated with the
mating pool. The crossover operation is applied between two randomly selected solutions as
parents, P1 and P2, to get a solution TC as child. If the child solution has less cost and fewer
Steiner points, then the best solution is replaced with the maximum cost spanning tree in the
population. Similarly another solution is selected randomly and the mutation operator is applied
to it, and it returns a child solution TC. Again, the population is updated with the new solution.

In each generation, the best solution is compared against the child solution. If the child's
solution is better than the best solution, the best solution is replaced, and the population is
updated. The probability parameter of selection, crossover and mutation is determined
empirically. The Algorithm 3 terminates after certain number of generations. The time
complexity of the algorithm is determined below and stated as Theorem 2 followed by the
proof.

Algorithm 3: Optimization Algorithm
Input: Modified Obstacle Avoidance Rectilinear Steiner Tree
Output: RRST
1. 𝑆𝑒𝑡, 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑆𝑖𝑧𝑒 𝑎𝑠 𝑠
2. 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑇 = 𝑇ଵ, 𝑇ଶ, . , 𝑇௦ 𝑢𝑠𝑖𝑛𝑔 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 1
3. 𝑇௕ = 𝐵𝑒𝑠𝑡 𝑜𝑓 𝑇
4. 𝑆𝑒𝑡, 𝑐𝑜𝑢𝑛𝑡 = 0 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑎𝑠 𝑔.
5. 𝑤ℎ𝑖𝑙𝑒 𝑐𝑜𝑢𝑛𝑡 < 𝑔 𝑑𝑜
6.

𝑃𝑒𝑟𝑓𝑜𝑟𝑚, 𝐵𝑖𝑛𝑎𝑟𝑦 𝑡𝑜𝑢𝑟𝑛𝑎𝑚𝑒𝑛𝑡 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛

7. 𝑃𝑒𝑟𝑓𝑜𝑟𝑚, 𝑅𝑜𝑢𝑙𝑒𝑡𝑡𝑒 𝑤ℎ𝑒𝑒𝑙 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛
8. 𝑈𝑝𝑑𝑎𝑡𝑒 𝑇
9.

𝑃ଵ = 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑇)

10.

𝑃ଶ = 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑇)
11. 𝑇௖ = 𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟(𝑃ଵ, 𝑃ଶ)
12. 𝑖𝑓𝑇௖ < 𝑇௕ 𝑡ℎ𝑒𝑛
13. 𝑇௕ = 𝑇௖
14. 𝑈𝑝𝑑𝑎𝑡𝑒 𝑇
15. 𝑒𝑛𝑑 𝑖𝑓
16. 𝑝 = 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑇)
17. 𝑇௖ = 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑝)
18. 𝑖𝑓 𝑇௖ < 𝑇௕ 𝑡ℎ𝑒𝑛

Semiconductor Optoelectronics, Vol. 42 No. 1 (2023)
https://bdtgd.cn/

1226

19. 𝑇௕ = 𝑇௖
20. 𝑈𝑝𝑑𝑎𝑡𝑒 𝑇
21. 𝑒𝑛𝑑 𝑖𝑓
22. 𝑒𝑛𝑑 𝑤ℎ𝑖𝑙𝑒

Algorithm 4: Crossover Process
Input: Particle P, Particle Q
Output: New Particle
1. 𝐶𝑜𝑚𝑚𝑜𝑛 𝐸𝑑𝑔𝑒𝑠 = 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛(𝑃, 𝑄)
2. 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝐸𝑑𝑔𝑒𝑠 = 𝑈𝑛𝑖𝑜𝑛(𝑃, 𝑄) − 𝑠𝑒𝑡1
3. 𝐴 𝑛𝑒𝑤 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑃௡௘௪ = 𝑈𝑛𝑖𝑜𝑛 𝐹𝑖𝑛𝑑(𝐶𝑜𝑚𝑚𝑜𝑛 𝐸𝑑𝑔𝑒𝑠)
4. 𝑤ℎ𝑖𝑙𝑒 𝑐𝑜𝑢𝑛𝑡 < 𝑔 𝑑𝑜
5.

𝑒(𝑢, 𝑣) = 𝑅𝑎𝑛𝑑𝑜𝑚 𝑠𝑒𝑙𝑒𝑐𝑡 𝑒𝑑𝑔𝑒(𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝐸𝑑𝑔𝑒𝑠)

6. 𝑈𝑝𝑑𝑎𝑡𝑒 𝑃𝑛𝑒𝑤 = 𝑈𝑛𝑖𝑜𝑛 𝐹𝑖𝑛𝑑(𝑒(𝑢, 𝑣))
7. 𝑒𝑛𝑑 𝑤ℎ𝑖𝑙𝑒

Algorithm 5: Mutation Process
Input: Particle P
Output: New Particle
1. 𝑆𝑒𝑙𝑒𝑐𝑡 𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑒𝑑𝑔𝑒 𝑒ଵ ∈ 𝑃
2. 𝑅𝑒𝑠𝑡 𝐸𝑑𝑔𝑒𝑠 = 𝑃 − 𝑒ଵ
3. 𝐴 𝑛𝑒𝑤 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑝௡௘௪ = 𝑈𝑛𝑖𝑜𝑛 𝐹𝑖𝑛𝑑(𝑅𝑒𝑠𝑡 𝐸𝑑𝑔𝑒𝑠)
4. 𝑤ℎ𝑖𝑙𝑒 𝑃𝑛𝑒𝑤 𝑛𝑜𝑡 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑡𝑟𝑒𝑒 𝑑𝑜
5.

𝑆𝑒𝑙𝑒𝑐𝑡 𝑡𝑤𝑜 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑜𝑖𝑛𝑡𝑠 𝑝ଵ, 𝑝ଶ ∈ 𝑃

6. 𝑖𝑓 𝐹𝑖𝑛𝑑 𝑠𝑒𝑡(𝑝ଵ) ! = 𝐹𝑖𝑛𝑑 𝑠𝑒𝑡(𝑝ଶ) 𝑡ℎ𝑒𝑛
7. 𝑈𝑛𝑖𝑜𝑛(𝑝ଵ, 𝑝ଶ)
8. 𝑏𝑟𝑒𝑎𝑘
9. 𝑒𝑛𝑑 𝑖𝑓
10. 𝑒𝑛𝑑 𝑤ℎ𝑖𝑙𝑒

Theorem 2: If g is the number of generations and n is the number of pins then the RRST can
be obtained in 𝑂(𝑔𝑛) time.

Proof: The first step of Algorithm 3 is to generate the initial population. If 𝑠 is the size of
population, the obstacle avoidance rectilinear Steiner tree is constructed for 𝑠 times. So the
initial population is created in O(s n log n) time.
The binary tournament and roulette wheel selection operation select one child by comparing
two solutions. Both runs the number of the of times the size of population which is O(s).
The crossover and mutation operation selects parents randomly in θ(1) times but performs the
union-find operation in O(n) times as per the Theorem 1. The update operation after a new
solution takes θ(1) times.
The complexity depends on the number of generations and all genetic operators like selection,
crossover, mutation, etc. If g > s, then the total time complexity becomes O(s n log n) +

ROBUST RECTILINEAR STEINER TREE CONSTRUCTION: A MULTI OBJECTIVE OPTIMIZATION USING GENETIC
ALGORITHM

1227

 O(g s) + O(g n) ≈ O(g n).

4 Experimental Result

The proposed RRST algorithm is implemented in Python language and tested on a PC with
Intel(R) Core(TM) i7-6700 CPU with speed 3.40GHz and 8 GB main memory. The current
study uses many graph benchmarks from the DIMACS Challenge to demonstrate the
practicality of the technique [1]. In this section, the existing literature [5, 9, 10, 12, 19]wire-
length and reduction percentage for the obstacle-avoiding problem are compared to RRST. The
execution times are also presented and compared with [5, 9]. This method uses fewer non-pins
to connect the outliers and generates fewer Steiner points. The number of non-pins and Steiner
points in RRST and Guo et al. (PORA) [5] are compared at the final part of this section.

Table 1: Instances from DIMACS Challenge.

Benchmark Pin# Obs#
IND1 10 32
IND2 10 43
IND3 10 59
IND4 25 79
IND5 33 71
RC01 10 10
RC02 30 10
RC03 50 10
RC04 70 10
RC05 100 10
RC06 100 500
RC07 200 500
RC08 200 800
RC09 200 1000
RC10 500 100
RT01 10 500
RT02 50 500
RT03 100 500
RT04 100 1000
RT05 200 2000

The Table 1 contains information on the IND, RC, and RT benchmark cases from the DIMACS
Challenge, as well as their obstacles and pins. There are five instances IND1-IND5, ten
instances RC01-RC10, and five instances RT01-RT05, each with a different number of pins
and obstacles. The IND instances include a minimum of 10 pins and 32 obstacles and a
maximum of 33 pins and 71 obstacles. The IND instances can contain as little as 10 pins and

Semiconductor Optoelectronics, Vol. 42 No. 1 (2023)
https://bdtgd.cn/

1228

as many as 32 obstacles, with a maximum of 33 pins and 71 obstacles. Similarly, RC instances
have a minimum of 10 pins and 10 obstacles and a maximum of 500 pins and 100 obstacles.
The benchmark RT contains large number of obstacles than pins, with a minimum of 10 pins
along with 500 obstacles and a maximum of 200 pins with 2000 obstacles.

Table 2: Wire-length Comparison and Reduction Percentage

Benchm
ark

Wire-length Reduction %

[5] [12] [29] [9] [10]
RRS

T [5] [12] [29] [9] [10]

IND1 622 - 639 618 609 145
76.6

9 -
77.3

1
76.5

4
76.1

9

IND2 9500 -
1000

0 9800 9691
1159

8

-
22.0

8 -

-
15.9

8

-
18.3

5

-
19.6

8

IND3 600 - 623 613 613 313
47.8

3 -
49.7

6
48.9

4
48.9

4

IND4 1109 - 1126 1146 1118 987
11.0

0 -
12.3

4
13.8

7
11.7

2

IND5 1345 - 1379 1412 1365 1154
14.2

0 -
16.3

2
18.2

7
15.4

6

RC01
2633

4
3041

0
2754

0
2763

0
2701

5
1822

8
30.7

8
40.0

6
33.8

1
34.0

3
32.5

3

RC02
4246

2
4564

0
4193

0
4329

0
4388

2
3655

1
13.9

2
19.9

1
12.8

3
15.5

7
16.7

1

RC03
5472

2
5857

0
5418

0
5694

0
5473

7
4710

9
13.9

1
19.5

7
13.0

5
17.2

7
13.9

4

RC04
6092

5
6334

0
5905

0
6199

0
6080

0
4698

2
22.8

9
25.8

3
20.4

4
24.2

1
22.7

3

RC05
7514

6
8315

0
7563

0
7568

5
7568

5
4962

6
33.9

6
40.3

2
34.3

8
34.4

3
34.4

3

RC06
8403

0
1497

25
8638

1
8466

2
8580

8
1663

94

-
98.0

2

-
11.1

3

-
92.6

3

-
96.5

4

-
93.9

1

RC07
1130

56
1814

70
1170

93
1135

98
1136

72
1309

62

-
15.8

4
27.8

3

-
11.8

4

-
15.2

9

-
15.2

1

RC08
1182

77
2027

41
1223

06
1191

77
1220

57
1223

06
-

3.41
39.6

7 0.00
-

2.63
-

0.20

RC09
1177

22
2148

50
1193

08
1170

74
1179

93
1170

74 0.55
45.5

1 1.87 0.00 0.78

RC10
1677

81
1980

10
1679

78
1672

19
1694

43
1354

08
19.2

9
31.6

2
19.3

9
19.0

2
20.0

9

ROBUST RECTILINEAR STEINER TREE CONSTRUCTION: A MULTI OBJECTIVE OPTIMIZATION USING GENETIC
ALGORITHM

1229

Average 9.71
27.9

2
11.4

1
11.2

9
10.9

7

The Table 2 compares wire-length calculated in earlier reported works [5], [12], [19], [9] and
[10] with the proposed method RRST. The 1st column of the table represents benchmark
instances, 2nd, 3rd, 4th, 5th, 6th and 7th column shows the Manhattan distance as the wire-length
of all other model including RRST. The wire-length reduction percentages with other papers
are provided in the 8th, 9th, 10th, 11th and 12th columns respectively. The reduction percentage
signifies the difference between the proposed approach and the others. For the benchmarks
IND1, IND3, IND4, IND5, RC01, RC02, RC03, RC04, RC05, RC09, RC10 the proposed
method RRST has a shorter wire length than previous models. These values are highlighted in
bold in the 7th column of Table 2. The last row of the table indicates the average of the reduction
percentage. The average wire-length reduction is 14.26% as compared to other models.

In the Table3, the actual execution time is captured using the 𝑡𝑖𝑚𝑒() library function. The 1st
column contains the benchmark instance details, 2nd, 3rd and 4th columns contains the [9], [5]
and RRST respectively. In most benchmarks, RRST has a shorter execution time than [5]
but a longer execution time than [9].

Table 3: Comparison of Execution Time

Benchmark FH-OAOS[9] PORA[5] RRST
IND1 0.02 0.57 0.2
IND2 0.02 0.66 1.01
IND3 0.02 0.5 0.2
IND4 0.02 1.32 0.8
IND5 0.03 1.54 1.23
RC01 0.01 0.64 0.54
RC02 0.02 0.25 0.4
RC03 0.07 1.12 1.05
RC04 0.13 2.4 2.09
RC05 0.19 3.68 3.5
RC06 0.31 4.55 6.56
RC07 1.26 8.17 9.43
RC08 2.07 9.34 9.36
RC09 2.43 11.2 10.7
RC10 3.8 20.45 19.5

Table 4: Comparison of Non-Pins Included and Steiner Points Generated

Instances PORA [5] RRST

Benchmark Pin#
Non-
Pin#

Steiner
Points#

Non-
Pin#

Steiner
Points#

Semiconductor Optoelectronics, Vol. 42 No. 1 (2023)
https://bdtgd.cn/

1230

IND1 10 5 7 0 7
IND2 10 40 40 35 31
IND3 10 7 12 0 9
IND4 25 18 33 8 29
IND5 33 15 31 12 21
RT01 10 375 189 272 121
RT02 50 645 341 530 294
RT03 100 600 445 513 380
RT04 100 1180 565 1093 692
RT05 200 2851 1567 2700 1453

Average 573.6 343 516.3 303.7

Another goal of this strategy is to minimize the number of Steiner points and non-pin nodes as
much as possible. The Table 4 shows the number of non-pins included to connect the outlier
pins and number of Steiner points generated by the RRST model against [5]. The 1st and 2nd
columns show instances details such as benchmarks and number of pins. The 3rd and 4th
columns mention the number of non-pins added and Steiner points generated in PORA [5]
model. The 5th and 6th columns present the non-pins and Steiner point produced in RRST
model. It can be seen that the number of non-pin depends on obstacles. The last row finds the
average of all non-pins and Steiner points. On an average the RRST generates fewer non-pins
and Steiner points than PORA[5].

Figure 8: Growth rate of Benchmark data Obstacle, Non Pins and Steiner Points. (a)
IND Obstacle Vs Non Pins (b) RT Obstacle Vs Non Pins. (c)IND Obstacle Vs Steiner

Points. (d) RT Obstacle Vs Steiner Points.

The Fig. 8 shows the growth rate of non-pins and Steiner Points against the number of obstacles

ROBUST RECTILINEAR STEINER TREE CONSTRUCTION: A MULTI OBJECTIVE OPTIMIZATION USING GENETIC
ALGORITHM

1231

in IND and RT Benchmark Data for PORA [5] and RRST approach. The x-axis represents the
obstacles data and y-axis represents the non-pins in Fig. 8 (a) and (b) and Steiner points in Fig.
8 (c) and (d) respectively. In all the figures, the RRST approach line is below the PORA [5]
approach. These reduced values indicate the state of the art of the proposed approach RRST
which outperforms the earlier works.

5 Conclusion

The current research offers a GA-based optimum obstacle avoidance rectilinear Steiner tree
constructing approach. It is a pretty simple and handy approach to build Steiner tree with
𝑂(𝑔𝑛) time complexity. The DIMACS Challenge benchmark is extremely difficult, with
outlier pins in certain situations. A heuristic approach is developed that adds the fewest possible
non-pins to connect the outlier pins. Because there are fewer non-pins, the wire length is
reduced by 14.26% compared to earlier reported works with fewer Steiner points. This model
will be beneficial for use in the VLSI physical design placement and routing part. Further as
the benchmarks contain numerous difficult obstacles, the work can be extended with some real-
world application problems in future.

References

1. https://dimacs11.zib.de/downloads.html
2. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms
(2009)
3. Fu, Z.H., Hao, J.K.: Swap-vertex based neighborhood for steiner tree problems.
Mathematical Programming Computation 9, 297–320 (2017)
4. Ghosal, P., Das, A., Das, S.: Obstacle aware RMST generation using non-manhattan
routing for 3D ics. In: Advances in Computing and Information Technology: Proceedings of
the Second International Conference on Advances in Computing and Information Technology
(ACITY) July 13-15, 2012, Chennai, India-Volume 3. pp. 657–666. Springer (2013)
5. Guo, W., Huang, X.: Pora: A physarum-inspired obstacle-avoiding routing algorithm
for integrated circuit design. Applied Mathematical Modelling 78, 268–286 (2020)
6. Guo, Z., Gu, F., Lin, Y.: GPU-accelerated rectilinear Steiner tree generation. In:
Proceedings of the 41st IEEE/ACM International Conference on Computer-Aided Design. pp.
1–9 (2022).
7. Hu, Y., Jing, T., Feng, Z., Hong, X.L., Hu, X.D., Yan, G.Y.: Aco-steiner: Ant colony
optimization based rectilinear steiner minimal tree algorithm. Journal of Computer Science and
Technology 21(1), 147–152 (2006)
8. Huang, X., Guo, W., Chen, G.: Fast obstacle-avoiding octilinear steiner minimal tree
construction algorithm for VLSI design. In: Sixteenth International Symposium on Quality
Electronic Design. pp. 46–50. IEEE (2015)
9. Huang, X., Guo, W., Liu, G., Chen, G.: Fh-oaos: A fast four-step heuristic for obstacle-
avoiding octilinear steiner tree construction. ACM Transactions on Design Automation of
Electronic Systems (TODAES) 21(3), 1–31 (2016)

Semiconductor Optoelectronics, Vol. 42 No. 1 (2023)
https://bdtgd.cn/

1232

10. Huang, X., Liu, G., Guo, W., Niu, Y., Chen, G.: Obstacle-avoiding algorithm in x-
architecture based on discrete particle swarm optimization for VLSI design. ACM Transactions
on Design Automation of Electronic Systems (TODAES) 20(2), 1–28(2015)
11. Iwata, Y., Shigemura, T.: Separator-based pruned dynamic programming for steiner
tree. In: Proceedings of the AAAI Conference on Artificial Intelligence.vol. 33, pp. 1520–1527
(2019)
12. Jing, T.T., Feng, Z., Hu, Y., Hong, X.L., Hu, X.D., Yan, G.Y.: λ-oat: λ-geometry
obstacle-avoiding tree construction with O(nlogn) complexity. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 26(11), 2073–2079(2007)
13. Joshi, B., Thakur, M.K.: Genetic algorithm-and cuckoo search algorithm-based routing
optimizations in network-on-chip. Arabian Journal for Science and Engineering pp. 1–10
(2022)
14. Kundu, S., Roy, S., Mukherjee, S.: Sat based rectilinear steiner tree construction. In:
2016 2nd International Conference on Applied and Theoretical Computing and
Communication Technology (iCATccT). pp. 623–627. IEEE (2016)
15. Lin, C.W., Chen, S.Y., Li, C.F., Chang, Y.W., Yang, C.L.: Obstacle-avoiding
rectilinear steiner tree construction based on spanning graphs. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 27(4), 643–653 (2008)
16. Lin, K.W., Lin, Y.S., Li, Y.L., Lin, R.B.: A maze routing-based methodology with
bounded exploration and path-assessed retracing for constrained multilayer obstacle-avoiding
rectilinear steiner tree construction. ACM Transactions on Design Automation of Electronic
Systems (TODAES) 23(4), 1–26 (2018)
17. Liu, C.H., Lin, C.X., Chen, I.C., Lee, D., Wang, T.C.: Efficient multilayer obstacle
avoiding rectilinear steiner tree construction based on geometric reduction. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 33(12), 1928–1941 (2014)
18. Liu, G., Zhu, W., Xu, S., Zhuang, Z., Chen, Y.C., Chen, G.: Efficient VLSI routing
algorithm employing novel discrete PSO and multi-stage transformation. Journal of Ambient
Intelligence and Humanized Computing pp. 1–16 (2020)
19. Long, J., Zhou, H., Memik, S.O.: Eboarst: An efficient edge-based obstacle-avoiding
rectilinear steiner tree construction algorithm. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 27(12), 2169–2182 (2008)
20. Mohapatra, C., Ray, B.B.: A survey on large datasets minimum spanning trees. In:
Artificial Intelligence: First International Symposium, ISAI 2022, Haldia, India, February 17-
22, 2022, Revised Selected Papers. pp. 26–35. Springer (2023)
21. Muniasamy, R.P., Nasre, R., Narayanaswamy, N.: Accelerating computation of steiner
trees on gpus. International Journal of Parallel Programming 50(1), 152–185 (2022)
22. Nath, S., Gupta, S., Biswas, S., Banerjee, R., Sing, J.K., Sarkar, S.K.: Gpso hybrid
algorithm for rectilinear steiner tree optimization. In: 2020 IEEE VLSI DEVICE CIRCUIT
AND SYSTEM (VLSI DCS). pp. 365–369. IEEE (2020)
23. Nesmachnow, S., Cancela, H., Alba, E.: Evolutionary algorithms applied to reliable
communication network design. Engineering Optimization 39(7), 831–855 (2007)
24. Pajor, T., Uchoa, E.,Werneck, R.F.: A robust and scalable algorithm for the steiner
problem in graphs. Mathematical Programming Computation 10, 69–118 (2018)

ROBUST RECTILINEAR STEINER TREE CONSTRUCTION: A MULTI OBJECTIVE OPTIMIZATION USING GENETIC
ALGORITHM

1233

25. Raidl, G.R., Julstrom, B.A.: Edge sets: an effective evolutionary coding of spanning
trees. IEEE Transactions on evolutionary computation 7(3), 225–239 (2003)
26. Razafindrazaka, F.H.: Delaunay triangulation algorithm and application to terrain
generation. International Institute for Software Technology, United Nations University, Macao
(2009)
27. Robins, G., Zelikovsky, A.: Minimum Steiner tree construction. In: Handbook of
algorithms for physical design automation, pp. 487–508. Auerbach Publications(2008)
28. Tran, C.: Proposing to improve the heuristic algorithms to solve a steiner-minimal tree
problem in large size sparse graphs. Journal on Information Technologies & Communications
2022(1) (2022)
29. Zavoianu, A.C., Saminger-Platz, S., Entner, D., Prante, T., Hellwig, M., Schwarz,M.,
Fink, K.: Multi-objective optimal design of obstacle-avoiding two-dimensional steiner trees
with application to ascent assembly engineering. Journal of Mechanical Design 140(6) (2018)
30. Zhang, H., Ye, D.Y., Guo, W.Z.: A steiner point candidate-based heuristic framework
for the steiner tree problem in graphs. Journal of Algorithms & ComputationalTechnology
10(2), 99–114 (2016)

