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Abstract— The present detection performance has to be substantially enhanced because of the 
numerous flaws in complex software. Several methods of finding security flaws in code have 
been presented. There is a family of methods that use DL its means Deep Learning techniques 
that show promise. This study is an attempt to use Code BERT, a deep contextualised model, 
as an embedding solution to make it easier to find security flaws in C open-source projects. 
Code BERT's use for code analysis unearths previously unseen patterns in software, which may 
improve the efficiency of subsequent processes like software vulnerability identification. 
Based on BERT's design, Code BERT offers a bidirectional stacked encoder of transformers 
to make it easier to study security flaws in code via long-range dependency analysis. 
Furthermore, transformer's multihead attention method allows for several essential variables of 
a data flow to be concentrated on, which is vital for evaluating and tracking potentially sensitive 
data faults, and ultimately results in optimum detection performance. Word2Vec, Glove, and 
Fast Text are four mainstream-embedding approaches that are compared to one another in order 
to determine the efficacy of the proposed Code BERT-based embedding solution for creating 
software code embeddings. The experimental findings demonstrate that when it comes to 
downstream vulnerability detection tasks, Code BERT-based embedding works better than 
other embedding methods. In order to further improve efficiency, we recommended include 
synthetic vulnerable functions and performing fine tuning using both real-world and synthetic 
data to aid the model in learning susceptible code patterns in C. While doing so, we investigated 
which settings would best fit Code BERT. Evaluation results reveal that the updated model 
outperforms various state-of-the-art identification techniques on our dataset. 
Keywords—BERT, Vulnerability, Embedding 
 
I. INTRODUCTION  
The vulnerability of software has been a major problem in cybersecurity research [1-3]. These 
security flaws pose a risk to the internet and computer systems of businesses and governments. 
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More and more security flaws are being uncovered. In 2010, there were over 4,600 CVEs 
(Common Vulnerabilities and Exposures) disclosed. By 2021 though, it will have increased to 
around 153 955. Similar to natural catastrophes, the threat posed by software vulnerabilities 
[4-6] is growing in frequency, magnitude, and severity, and may have far-reaching 
repercussions. Millions of computers might be compromised if an exploitable flaw in a critical 
system is ever used [7]. 
Software vulnerabilities are and will remain a major issue [8], despite attempts to reduce the 
likelihood of making mistakes during development. There has been a dramatic shift in 
vulnerability defence in recent years, from an emphasis on passive detection to an effort to 
actively forecast whether or not a code snippet includes a vulnerability. 
In recent years, there has been a lot of focus on using deep learning to uncover vulnerabilities. 
These approaches have been applied to the field of networking and communications with 
encouraging results [9, 10]. As a result, researchers are motivated to enhance the usefulness of 
deep learning-based vulnerability detection solutions from a variety of perspectives. Neural 
networks are applied for automated feature extraction in vulnerability detection tasks, which 
helps to improve the generalization ability of a model capable of latent features and extracting 
high-level automatically. In order to apply deep learning methods to the task of vulnerability 
detection, one must first gather data, then prepare that data, then construct a model, and finally 
test and evaluate the effectiveness of the model. Existing vulnerability detectors using 
conventional embedding techniques like GloVe, Word2Ve, and FastText generally suffer from 
low accuracy and recall [11]. . Code's bimodal nature [12] necessitates a model that can account 
for distant contextual relationships. Nonetheless, recent research often use standard embedding 
approaches, such as Word2Vec, which can only generate an individual embedding for a 
specific code token and not embeddings based on diverse contexts. Due to this, we think of 
employing Code BERT as a feature generator and code embedding. 
Code BERT may generate several embeddings according on the situation. Code BERT, on the 
other hand, is predicated on a bidirectional transformer that may record dependencies between 
code sequences that are physically separated. Information loss is reduced, relationships 
between contexts are protected, and hidden patterns of susceptible code are identified. Code 
BERT, on the other hand, is built on the same principles as multihead attention, allowing it to 
zero in on various landmarks inside a code sequence. The value of a variable in a code fragment 
with a loop is dynamic and depends on the loop condition; yet, the vector associated with this 
variable in the noncontextual embedding techniques remains static. The produced vector 
representation does not reflect the value change that occurred to the variable, which is indicated 
by the.is symbol. One possible explanation for the relatively low precision achieved by the 
work [11] Word2Vec is used because noncontextual embedding models can only generate a 
single representation with one word, and hence cannot provide alternative representations 
based on the varied coding contexts. 
The acronyms used throughout this study are shown in Table 1, and we address this omission 
by using a Code BERT-based embedding solution for vulnerable function identification. Using 
natural language approaches like Word2Vec, GloVe, and FastText, recent studies have 
produced outstanding results in embedding source code. Code BERT's foundation in the 
bidirectional transformer makes it a useful tool for gaining a broad grasp of code semantics. 
Additionally, Code BERT utilises 12 parallel attention heads, a method inherited from 
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multihead attention, which enables the model to simultaneously attend to susceptible features 
from distinct representation subspaces at different places. 
. 
Code BERT has the potential to generate more meaningful code embeddings than 
noncontextual embedding approaches like Word2vec, GloVe, and FastText because of this. In 
a wide range of code processing/analysis tasks, including defection detection and clone 
detection, and natural language code search, Code BERT showed encouraging results. But it 
hasn't been applied to finding C language security flaws. in conclusion 
There are three main takeaways from this paper. 
I. We provide a comprehensive analysis of many popular code embedding systems, 
including GloVe,Word2vec, FastText, and Code BERT. We find that in terms of vulnerability 
identification in C open-source projects, the greatest results may be achieved by employing 
Code BERT as a code embedding solution. 
II. To overcome the data imbalance issues commonly encountered in vulnerability 
detection, we employ synthetic vulnerability data collected from Software Assurance 
Reference Dataset (SARD) to fine tune the settings of Code BERT. Using simulated 
vulnerability data has been shown to optimise vulnerability detection outcomes and further 
enhance Code BERT's utility in experiments. 
III. Important Code BERT settings for code feature extraction are analysed, and the ideal 
parameters for vulnerability detection are rated for performance. 
This paper's remaining sections are structured as follows. Some previous research on 
vulnerability identification using deep learning is presented in Section 2. In Section 3, we 
discuss the study's conceptual framework, the learning of a code representation, the fine-tuning 
procedure, and the effect of changing the sequence length on the algorithm's performance. Our 
findings and interpretation of the experiments are presented in Section 4. As a wrap-up to this 
work, we explain some of the caveats of the suggested approach and some questions that still 
need to be answered in the future. 
II. CONNECTED TASKS 
Numerous methods have been developed for finding security flaws in software. There are 
multiple overviews that provide systematic assessments of several techniques in this subject 
from different vantage points [5, 28-32]. 
Meanwhile, we provide a broad overview of recent studies that have used deep learning to find 
flaws in a range of neural networks (see Table 2). The convolutional neural network (CNN) 
[13–16], the deep belief network (DBN) [17], the multilayer perceptron (MLP) [18, 19], the 
long short-term memory (LSTM) [20–22], and the gated recurrent unit (GRU) [11] are just a 
few of the numerous deep learning architectures. In addition, a sizable body of research has 
concentrated on the use of various embedding methods for creating vector representations to 
be used in the training procedure. Table 3 provides a synopsis of the studies that were evaluated. 
Word2Vec was used by Pradel and Sen [23] to produce code vectors from domain-specific 
Abstract Synthetic Trees (ASTs). These vectors were used for the training of deep learning 
models to find JavaScript vulnerabilities. Word2Vec was used to generate vector 
representations of C/ C++ code [13]. 
The GloVe model was used by Henkel et al. [24] to generate vectors from C programme 
Abstracted Symbolic Traces as an alternative to the Word2Vec tool. In addition, FastText was 
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used in FastEmbed [25] to anticipate vulnerabilities using a collection of machine learning 
models. 

TABLE I.  ACRONYMS USED IN THE DOCUMENT ARE LISTED BELOW. 

 
TABLE II.  ANALYZED RESEARCH PAPERS THAT UTILISED VARIOUS NEURAL 

NETWORKS TO IDENTIFY SECURITY FLAWS IN SOFTWARE. 

 
TABLE III.  ANALYZED RESEARCH PAPERS THAT USED DIFFERENT 

EMBEDDING APPROACHES IN SOFTWARE DEVELOPMENT. 

 
In order to generate code representations, numerous contextualised embedding models have 
been used recently. CuBERT (Code Understanding BERT), introduced by Kanade et al. [26], 
trains a BERT model on software source code to provide contextual embeddings. To create 
code representations in context, Karampatsis and Sutton [27] devised a methodology called 
SCELMo. Both papers demonstrate the usefulness of contextualised embedding models for 
several code analysis applications. For the purpose of vulnerability identification, we employ 
Code BERT, which is also a pretrained contextualised model on six programming languages. 
III. METHODOLOGY 
A. Procedures for Conducting Research. 
      We compile a ground truth dataset consisting of a variety of software projects with varying 
characteristics, and we choose numerous synthetic vulnerabilities at the function level. Our 
process is depicted in Figure 1. Specifics comprise three phases, as shown below. We begin by 
loading the original code and converting it to a JSON format that Code BERT can understand. 
In traditional models, sequence data and labels are generated by reading and executing the 
corresponding source code files. After the data has been turned into code embedding vectors, 
it is sent on to the next step of the process, where it will be partitioned and given to the GRU 
neural network to be trained. In order to assess three classic embedding strategies, we used a 
technique for training code vulnerability detectors. The system was developed using the 
benchmark for open-source APIs suggested in [11]. Second, we use the synthetic data to train 
Code BERT, and then we construct the test set's vulnerability probabilities based on this trained 
model. . In a strange twist, we assessed the effect of adjusting parameters such input sequence 
length, epoch, batch size, and learning rate depending on fine tuning. Finally, the optimal input 
sequence length is established for vulnerability feature extraction from C programmes. Tasks 
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geared at addressing the following three research questions are carried out to ensure the 
suggested approach is effective in delivering the intended outcome. The outcomes will be used 
to answer each inquiry. 
       To what extent is Code BERT superior to alternative embedding techniques? This is our 
first research question (RQ1). . This is a relevant research subject since it has been argued that 
Code BERT cannot be used to extract features from C programmes. For  

 
Fig. 1. There are three steps in our workflow. The first step involves a comparison of four 

models' outputs. Stage 2 involves blending a synthetic dataset created using SARD projects 
with the actual dataset in order to fine-tune Code BERT's settings. In the third phase, we 

analyse critical Code BERT settings for extracting features from code. 
        In order to address this question, we will evaluate Code BERT in comparison to other 
methods such as Word2vec, GloVe, and FastText. Our second research question (RQ2) is: 
"How can we enhance Code BERT's vulnerability detection performance?"To address this, we 
do tests comparing and contrasting Code BERT with and without the use of a real-world 
dataset.Input sequence length and its effect on Code BERT is the topic of our third research 
question (RQ3). We examine the tweaked model's efficiency on the identical classification 
tasks using sequences of varying lengths. 
B. Understanding Code Representations 
      Embedding models like Word2Vec, Glove, Fast Text, and Code BERT are used to 
transform text tokens into meaningful vectors; they have certain commonalities but also have 
some key distinctions. Using the following criteria, we compare four distinct models. Code 
BERT, in comparison to the other three models, has a more complicated structure from a 
modeling standpoint. Skip-gram and CBOW are the two models found in Word2Vec. Both 
CBOW and skip-gram use context words to predict middle words; skip-gram uses middle 
words to anticipate neighboring words. Each model consists of an input layer, a mapping layer, 
and an output layer. . Since the hidden layer is linear in its structure, it can be trained quickly. 
Word2Vec creates a separate vector for every word in the corpus, but it doesn't take into 
account how words like "apple" and "apples" are related to one another. The two terms have 
identical internal morphology, making them synonymous. Yet Word2Vec processes both 
words, therefore this internal form is not taken into account. FastText employs n-grams based 
on individual characters to prevent this issue. Similar to the FastText model, which likewise 
consists of an input layer,and an output layer,  a hidden layer, the network structure of the 
FastText model is rather straightforward. Matrix factorization is used by GloVe, and the 
training time is quite quick. The produced word vector, however, lacks in semantic information 
and is hence only useful for specific applications like similarity computation. Code BERT's 
model structure is more involved than that of the three models just discussed. Code BERT uses 
a multilayer two-way transformer as its foundation. Code BERT is structured as follows: 12 
layers, 12 self-attention heads per layer, 64-by-64-pixel heads, and a 768-by-768-pixel hidden 
dimension. Vulnerability assessment will be impacted by these distinctions in model structure 
and computer system. 
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Given that a target word may represent many contents, a noncontextual embedding model 
would be too limiting, but Code BERT can produce several vectors for a word based on context 
information. GloVe,Word2Vec, and FastText cannot. 
 
Knowing the context is essential when assessing any kind of vulnerability. Figure 2 depicts an 
inspiring real-world example. Since a and b are both short types in the susceptible code (shown 
in Figure 2(a)), the result of b b + a might cause b to go outside of its range. To prevent this 
mistake, the range of a was constrained in the corrected function (shown in Figure 2(b)) to be 
smaller than 0. The values of an are outside of the same range in the two functions. Variables 
might have several meanings depending on their surroundings, and this work uses Code BERT 
to extract high-level code representations for spotting susceptible C routines. The accurate 
comprehension of code semantics will be impacted if conventional models like GloVe, 
Word2Vec,and FastText are used to transform a word into a fixed vector [33]. Code BERT is 
a pretrained model for natural language and programming languages that uses Masked 
Language Modeling (MLM) and token replacement in its training (RTD). In addition, RTD 
makes extensive use of unimodal data, such as code bases without corresponding natural 
language data. We use the second goal, vulnerability discovery, to our advantage. In [34], the 
idea of a transformer-based embedding model called Code BERT is introduced. We also make 
use of the encoder's multihead attention layer and feedforward network encoder. The utilisation 
of residual connections across two layers is intended to enhance memory retention. While Code 
BERT has not been trained in C language syntax and semantics, it is able to effectively apply 
the knowledge it has gained in other programming languages through the process of transfer 
learning. 

 
Fig. 2. using C functions as an illustration. An exposed operation, a. This new function is (b). 
Vulnerable patterns often include declarations, assignments,other operational logic control 
flow, and examining the contiguous information is frequently inadequate to build semantically 
meaningful vector representations [36]. Therefore, it is essential to focus on a variety of pivotal 
locations inside the weak functions. As a result of the algorithm's ability to split its attention 
across numerous targets, multihead attention makes it easier to identify and exploit weak spots 
in the code. Furthermore, the vulnerability pattern is time-dependent, which means that long-
distance contextual information is essential for identifying sensitive functions. Words like Xin 
and Xi+n of the term Xi might be helpful for susceptible functions. Positional embedding was 
developed to help find out how a word is related to its neighbours. To facilitate the addition of 
the two parameters, the input embedding layer is supplemented by a positional encoding layer, 
the dimension of which is identical to that of the embeddings (dmodel). 
Because the source code structure follows the principles of logic or formal argument and is 
concerned with meaning in language or logic, it is interconnected and tightly tied. 
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As a result, the presence of a potentially exploitable code snippet is typically attributable to its 
constituent parts' links or connections to other portions of the code, either in the immediate or 
distant past, or both. The lines of code in a susceptible code snippet are typically rather long 
and can span an entire function [37]. It requires a lot of work or expertise with standard 
embedding models like Word2Vec [38], but the transformer's design makes it easy to verify 
the distance between each word. Therefore, Code BERT's architecture may facilitate the 
model's detection of a long-term reliance of both backward and forwardby providing services 
that can effectively capture the susceptible programming patterns. While Code BERT has not 
been specifically trained in C, it is able to transfer its knowledge of relevant patterns from other 
programming languages to a related detection job through a process called transfer learning. 
In order to extract features from the source code, we investigated four different embedding 
models. Word2Vec: 100-dimensional feature vector, 5-word maximum distance between 
current and anticipated words in the same phrase. 
A word is disregarded if it appears less than five times. 
The maximum distance between the current and predicted word inside a phrase is set to 5 in 
GloVe, and the dimensionality of the output word vectors is set to 100. Additionally, 40 
iterations are performed on the corpus, and the learning rate for training is set to 0.001. In 
FastText, a 100-by-100-by-5-point gap between a present and forecast word inside a phrase is 
used as the default. Don't count words that occur less than five times in 20 epochs. Code BERT: 
default number of epochs is 5, default sequence length is 400, default learning rate is 2e 5, 
default amount of data samples recorded in a single training session is 4, and we utilised the 
Adam optimizer throughout. 
the layer into which this model receives the open-source code 
Source code embedding: reducing the dimensionality of the vector used to represent the code. 
In order to learn a high-level representation of features, we use a series of 12 encoder layers. 
Layer with all connections made: used exclusively for tuning purposes. 
In other words, this is the layer that is responsible for disseminating the high-quality feature 
description for vulnerability detection that has been learnt. 
 
C. Precision Tuning using Artificial Data 
In this research, we present a fine-tuned method that helps Code BERT understand the syntax 
and structure of C programmes while also capturing their meanings. The C programming 
language is not one of the six languages that Code BERT has been pretrained in. To utilise 
Code BERT, you need to be familiar with the C language's code pattern and follow a fine-
tuning technique, but you don't need to train it on C language data. 
Code BERT needs a lot of training data with labels in order to get it just right. It takes a lot of 
effort to manually identify the weak points in the system's most important functions. In order 
to fine-tune the Code BERT, it is difficult to gather a large amount of real data. The following 
are some of the justifications for including a synthetic artificial dataset: To begin, there is 
enough data and variety in the simulated set. The syntax and coding conventions used in its 
simplest forms are included. In addition, it has reliable labels, which are better for model 
improvement and training. Specifically, we are employing the SARD dataset, where synthetic 
vulnerable functions are poured off the training set and validation set, respectively, to create a 
total of 10,000 functions, 10% of which are susceptible. 
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The problem of data disparity is therefore also addressed. In practise, data are rarely perfectly 
balanced for multi-classification tasks like financial fraud detection or fault isolation. The 
majority class's characteristics are emphasised during the model's training, while the minority 
class's characteristics are ignored, thanks to the data distribution's limitations. The model's 
ability to classify data becomes less accurate as a result of this. The capability of the model to 
extract vulnerability traits can be bolstered by the inclusion of artificially created vulnerability 
data. The real-world dataset is split into validation set, a training set, and test set, with 1189, 
395, and 399 susceptible functions, respectively, in accordance with the mixed dataset settings 
[39]. To ensure that susceptible functions constitute exactly 10% of the total functions in the 
synthetic dataset, 7486 vulnerable functions are hand-picked for the training set and 2495 
vulnerable functions are poured into the validation set. The test data set did not contain any 
susceptible synthetic functions. 
D. Examine the Effects of Penalties 
     Code BERT Fine-Tuned for a Range of Sequence Lengths. Initial investigations show that 
employing varied sequence lengths has a profound effect on detection outcomes, and this is 
likely due to the fact that source code functions have varying durations when transformed to 
sequences. In order to strike a good balance between excessively lengthy vectors and 
information loss, it is necessary to truncate the overly long codes while converting codes to 
vectors of the predetermined length. If a function's code sequence is too short, it is extended 
by 1 s. The efficiency of the Code BERT model is very sensitive to the length of the input.e 
sequence. A large number of functions will be truncated when the input sequence is too short, 
leading to data loss. .e model is unable to properly comprehend the nuances of functions. What 
it picks up could be as minimal as the variables' declarations and definitions. When the input 
sequence is too lengthy, many functions will end up being filled with 1, and most of the space 
will be taken up by meaningless data. Some potentially exploitable functions may be located 
in other phrases than the one where the focus is currently being held, hence there are also long-
distance dependencies inside the programmes. Code BERT's bidirectional design means that 
the model can lose track of its past observations if the separation is too great. Therefore, the 
length of the input sequence is crucial, since it allows the model to zero in on the specific 
susceptibility trait. 
Table 4 depicts the lengths of functions from the real-world dataset, which has a total of 
132,018 functions. We found that around 45.4% of samples are within 128 elements in length, 
and that 67.7% of all functions have a length of fewer than 256. 
A 128-element sequence may not be optimal, despite the fact that this range contains the largest 
percentage of all possible inputs. There's a tradeoff to be made between the relative importance 
of shorter and longer sequences of function codes. 
Specifically, we optimised Code BERT with sequence lengths of 128, 256, 384, and 512. 
Initially, we fine-tuned the.e model, and then we used the Adam optimizer with a learning rate 
of 2e 5. The batch size is 4, which takes into account the GPU's memory constraints. One of 
the numerous hyperparameters we modified to reach the ideal values was the batch size, which 
plays a role in the model's generalizability. Given that Code BERT has already been pretrained 
on six distinct programming languages, but still need its weights to be initialised, some 
adjustment is required before the model can be used for the specific job at hand. 
 



FINDING SOFTWARE FLAWS WITH DEEP NEURAL NETWORKS: A COMPARISON AND OPTIMIZATION 

 
51 

IV. ANALYSIS AND TESTING 
A. Dataset 
We theorised that security flaws are typically mirrored in the structure of the source code, 
especially at the function level. Therefore, the weaknesses we discuss in this study are those at 
the level of individual functions. Table 5 displays the statistics for the aforementioned data 
sets. 
1) Authentic Dataset 
The assessment dataset is comprised on 12 widely used open-source software projects and 
libraries, including Asterisk,ImageMagick, Httpd,LibPNG, OpenSSL,LibTIFF, Pidgin, qemu, 
samba, VLC Player, and Xen. vulnerabilities at both the file and function level, the.is dataset 
originally developed by Lin et al. [11] has been expanded to provide a dual-granularity 
vulnerability detection dataset. TheCommon Vulnerabilities and Exposures (CVE) and 
National Vulnerability Dataset were used to guide the human labelling of susceptible files and 
routines (CVE). We use the dataset, which contains 1,983 susceptible functions and 130,035 
nonvulnerable ones, to conduct our tests. Classifiers may learn real-world susceptible patterns 
with the help of the real-world vulnerability dataset. 
2) Made-Up Dataset 
The Software Assurance Reference Dataset (SARD) project provided the source data for the 
function samples used in the synthetic vulnerability dataset. Source code patterns that are 
known to be susceptible have been used to artificially build code fragments for the samples. 
Meanwhile, each test case relies on a single major function to ensure the code is compilable. 
Classifiers may be trained on the synthetic dataset to recognise the susceptible, but simplified, 
patterns. 
B. Conditions of the Experiment 
Python's Keras and TensorFlow's Word2Vec, GloVe, and FastText are used to realise Code 
BERT's backend, while the language's dictionaries are used to realise Word2Vec, GloVe, and 
FastText (1.14.0). Our testing platform is a PC outfitted with a 4.00 GHz Intel Core i7-6700k 
CPU and a 4.00 GHz NVIDIA GeForce GTX 1070 GPU. examination of four distinct designs: 
Code features extracted by four embedding models (Word2vec, FastText, GloVe, and Code 
BERT) are compared and contrasted on a real-world dataset to see which one performs best. 
We found 1,983 vulnerable functions out of a total of 132,018 across 12 open-source projects. 
Selected samples of source code functions are split 6:2:2 across the training set, the validation 
set, and the test set. Step five, the fine-tuning phase, saw a comparison experiment performed 
to prove the viability of the suggested approach that 

TABLE IV.  LENGTH DISTRIBUTIONS OF EXPERIMENTAL DATASETS AND 
TEST SETS IN THE ACTUAL WORLD. BASED ON THEIR LENGTH, E FUNCTIONS 

ARE SEPARATED INTO FIVE DISTINCT CLASSES. 

 
TABLE V.  SARD 
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aids in the development of Code BERT by providing feedback. Code BERT was trained and 
validated on Table 6's functions, and then input the test set into the model to generate a CSV 
file ordering the functions by their vulnerability likelihood. We utilised the same three sets 
from the fine-tuning phase as the evaluation dataset to determine the best values for the other 
parameters. 
C. Parameters for Assessing Performance. 
    Precision and recall are often used measures of performance for categorization tasks. 
However, there are many more nonvulnerable functions than vulnerable ones; the ratio is 
around 96:1. This extreme data imbalance might cause the classifier to prioritise the more 
numerous class when training, leading to inaccurate results. Top-k percentage precision 
(P@K%) and top-k percentage recall (R@K%) is extensively used in the study of information 
retrieval systems of the top-k retrieved documents, and we employ these metrics to accurately 
monitor the performance of the suggested approaches. 
The test set data (P@K%) is the susceptible data that was successfully detected by the 
vulnerability scanner. It is possible to compute R@K% using the two mathematical formulas 
below, where K% is the fraction of the test set containing vulnerable data. 

 
D. Results and Analyses 
A number of research projects have been undertaken to solve the problem of vulnerability 
detection; examples include the method presented in [11] and an open-source detector called 
Flawfinder [40]. Since we have complete access to the source code and the dataset, we utilise 
these systems as the benchmarks, and Flawfinder is a well-known open-source programme that 
is extensively used in practise. There is an order to the evaluation, which is achieved by 
answering three specific research questions. 
Since choosing an appropriate embedding approach can have a significant impact on the 
efficacy of vulnerability detectors (RQ1), we evaluate Code BERT against more conventional 
embedding models to ascertain which is the best option for this purpose. In this article, we 
provide the findings of an experiment in which four embedding models were used to identify 
potentially exploitable C programming language functions. Figure 3(a) provides a detailed 
comparison of the accuracy achieved by four embedding models when extracting the top 1% 
of most likely susceptible functions: 46%, 28%, 41%, and 61%, respectively. As may be seen 
in Figure 3(c), 
TABLE VI.  PARAMETERS OF CODE BERT, IT IS IMPORTANT TO KNOW THE 
TOTAL NUMBER OF SUSCEPTIBLE AND NONVULNERABLE FUNCTIONS. IN 
ORDER TO ENSURE SUSCEPTIBLE FUNCTIONS ACCOUNT FOR JUST A TENTH OF 
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THE TOTAL NUMBER OF FUNCTIONS, WE SUPPLEMENTED THE ORIGINAL 
DATASET WITH SYNTHETIC DATA FOR USE IN THE TRAINING SET AND 
VERIFICATION SET. 

 

 

 
Fig. 3. The findings of two independent tests. Precision and recall for several embedding 

approaches (a) and three models (b) and (d). 
     Code Bert’s green line (recall) is higher than the other three lines (recall from 
GloVe,Word2Vec,and Fast Text). Code BERT was able to find 40% of all susceptible 
functions by fetching only 1% of functions. Only 30% of the overall susceptible functions were 
discovered using Word2Vec. 
Fast Text and Glove models could only identify 27% and 20% of true susceptible functions, 
respectively. In comparison to the other three approaches, Code BERT's code embeddings 
make it easier to spot security flaws. 
To round things up, we thought about how hard it would be to use Code BERT computationally. 
The encoder structure of the transformer and the multihead attention mechanism are both 
wrapped in the deep learning framework, making it difficult to directly assess the 
computational complexity of Code BERT (e.g., PyTorch). . Thus, we decided to evaluate the 
effectiveness of Code BERT and other embedding techniques by contrasting their training and 
testing durations. 
Code BERT's computational complexity may be measured against other similar programmes. 
Table 7 describes Code BERT, the other three models, and their training and test times, each 
as measured in epochs. 
We found that during the training phase, Code BERT required 6720 seconds to finish one 
epoch. In comparison, all three embedding models took about the same amount of time to train 
(about 300 seconds). 
. 
When comparing training times, the noncontextual models (Word2Vec, GloVe, and FastText) 
perform better than Code BERT. This is because the structure of the Code BERT model is more 
complicated. 
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the second research question is to see if fine-tuning Code BERT will increase its performance. 
At the output's base, we add a layer of complete connectivity. Meanwhile, we use a simulated 
dataset of software vulnerabilities to further adjust the settings. 
Synthetic dataset used in the Assurance Reference Dataset (SARD) project to model vulnerable 
code patterns via testing. Figure 3(b) and (d) indicate that after fine tuning, the model is 8% 
more accurate when obtaining 1% of susceptible functions, and it is able to locate 84% of all 
vulnerable functions while getting 15% of possibly vulnerable functions. Also, the fine-tuned 
model performs better than other models, including the vulnerability detector [11]. The 
increases in accuracy (24%) and recall (16%) are rather large when only 1% of all functions 
are retrieved. Using the fine-tuned method was shown to increase detector performance. 
The goal of this experiment is to learn how much of an effect the optimal sequence length has 
on RQ3. We design tests to prove that certain sequence lengths are optimal for detecting 
vulnerabilities. The outcomes of models with varying sequence lengths are displayed in Tables 
8 and 9. Out of a total of 26,425 functions in the test set, 399 are known to have security flaws. 
We conclude that a sequence length of 256 is optimal for finding C-language software flaws. 
The model is optimized for sequences of length 256, which is true whether the goal is to get 
the top 1%, 5%, 10%, or 15%. The sequence length of 128 in the model only incurs a 26% 
accuracy loss when analysing the top 1% of all functions. 
We compared the aforementioned findings to a baseline for consistency's sake. The findings of 
the suggested technique, as shown by Flawfinder, rank functions based on the likelihood that 
they are susceptible. As a result, we used the aforementioned measures of effectiveness to 
characterise both detectors. We report on a comparison of their detection abilities in the actual 
world. 
Vulnerabilities: The comparative findings may be seen in Tables 8 and 9, where the model with 
a sequence length of 256 significantly beats the FlawFinder. When retrieving the top 1% of 
functions from the test set of 399 susceptible functions, Flawfinder only achieved 3% accuracy 
and 2% recall, whereas the same model with a sequence length of 256 incurs a P@1% of 70% 
and R@1% of 47%. 
The Flawfinder returns subpar findings, as well, retrieving just 5%, 10%, and 15% of routines 
classified by vulnerability severity, respectively. 
. 
This scenario demonstrates one again how efficient the Code BERT-based embedding 
approach is for finding security flaws. 
V. DISCUSSION 
The compromise that must be made between ease of use and precision in modelling is discussed 
here. It is impossible to directly analyse the computational cost of Code BERT since the 
encoder structure of the transformers and the multihead ann model are both enveloped in the 
deep learning framework.As an illustration of the temporal cost of training, we use an era. Code 
BERT's training time was 6720 seconds, Word2Vec's was 287 seconds, GloVe's was 285 
seconds, and FastText's was 286 seconds, thus it's evident that Code BERT requires the most 
time. The fundamental reason is that Code BERT may potentially store a vast body of 
information that the other models have not captured, such as certain hypothetical code patterns 
and semantic aspects, because to its complicated structure and high capacity. Also, the 
parameter is complicated and requires extensive computation, which adds extra time. 
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Still, Code BERT is preferable to other options since it enhances accuracy and recall in 
vulnerability discovery. 
Tables 8 and 9 display statistical data illustrating how different sequence lengths fared while 
using Code BERT to extract code characteristics. Finding the right compromise between 
function length and input sequence length is another difficulty of the current work. We 
investigate the many factors that may account for the observed performance variations across 
sequence sizes. The 256-item sequence length fared best on the real-world dataset compared 
to all other lengths. 
The susceptible functions have data like a head file, variable declaration, logic 
code,parameters, and a return value, which is why they are exploitable. The features acquired 
may be limited to things like header files and variable declarations if the sequence length is too 
short. As vulnerabilities are typically encoded in obfuscated logic, the model may end up 
learning aspects that aren't relevant to the problem at hand. When the sequence length is more 
than 256, performance suffers; this may be due to the fact that the majority of susceptible 
functions have lengths less than 256; if the sequence length is set too high, the sequence will 
be automatically filled with 1. Models' capacity to judge the vulnerability's aspects will be 
hampered if too much extraneous data is included in the analysis, while at the same time 
attention will be diverted to the extraneous data. 
In most cases, lowering the sequence length to 256 will significantly cut down on wasteful 
repetition and data loss. 
TABLE VII.  TRAINING AND TESTING DIFFICULTIES WHEN EVALUATING FOUR 
MODELS 

 

 
TABLE VIII.  COMPARE FLAWFINDER'S ACCURACY ON THE IDENTICAL 
CLASSIFICATION TASKS WITH THAT OF SEQUENCES OF VARYING LENGTHS. 
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TABLE IX.  COMPARE FLAWFINDER'S RECALL ON THE IDENTICAL 
CATEGORIZATION TASKS WITH THAT OF SEQUENCES OF VARYING LENGTHS. 

 
VI. CONCLUSIONS 
       In this research, we offer an embedding technique for vulnerability detection that is 
inspired by Code BERT. Code BERT has not been educated on the syntax and semantics of 
the C programming language, but it has been taught other languages and has the ability to 
quickly pick up the most useful characteristics of C. To fine-tune Code BERT, we have utilised 
both C open-source projects and custom-built C functions. In the meantime, we have built a 
practical real-world dataset for gauging the efficacy and quality of the solution and future 
iterations of deep learning-based vulnerability detectors. . The experimental findings 
demonstrate that the suggested embedding solution may return K (1, 5, 10, 15)% of all 
functions with accuracy that exceeds expectations, suggesting that the method can aid in the 
discovery of vulnerabilities in C open-source projects. 
      The following restrictions of the current system should be removed for it to be further 
enhanced. Code BERT, which    has 12 encoder layers and almost 110 million parameters, is 
both time-consuming and costly to train and install. 
. 
      Consequently, it may be helpful to provide a simplified  model. 
Second, current embedding approach for vulnerability detection can only handle software code 
in C# and C++. More study is needed to allow for integration with other computer languages, 
and a big real-world dataset with numerous detection granularities is currently lacking. In order 
to hasten the data collecting process, further study might be put into creating an automated 
vulnerability data labelling system. 
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