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ABSTRACT 
The rising popularity of electric vehicles (EVs) gained the development of efficient energy 
management systems for hybrid battery systems. A hybrid battery system, which combines 
various storage devices types like supercapacitors, batteries and fuel cells to improve the 
energy efficiency and EVs performance. However, efficient energy management is crucial for 
hybrid battery systems to attain best efficiency, battery lifespan, and reduce the environmental 
impact. This study presents effectively managing energy for hybrid battery systems in electric 
vehicles by utilizing DNNs. This integrates a fuel cell, battery, and supercapacitors to satisfy 
variable power requirements of the electric vehicle. The battery management system is 
modeled using PI controllers and machine controllers, while the fuel cell control is performed 
using a DNN. DNNs are capable of handling complicated and nonlinear interactions between 
the system's inputs and outputs, making them suitable for energy management in EVs. This can 
be adapted in changing driving situations and optimize the energy flow between different 
energy storage devices. The study provides insights into the effectiveness of DNNs for 
controlling fuel cells in electric vehicles, and the proposed control model can be used to 
improve the power and efficiency of EV’s. 
Keywords: Hybrid Battery Systems, Deep Neural Networks, Fuel Cells, Energy Storage 
Devices, Battery, Supercapacitors 

1. INTRODUCTION 

Hybrid battery systems in recent years, became attention seeking due to their potential to 
improve the power and efficacy of EV’s. EVs have emerged as a sustainable alternative to 
conventional gasoline-powered vehicles, offering numerous environmental and economic 
benefits. However, the limited driving range and long charging times of EVs have hindered 
their widespread adoption. Hybrid battery systems have been proposed as a solution to these 
challenges, allowing for the efficient use of various storage devices types like fuel cells, 
supercapacitors and batteries. Batteries, the primary energy storage device in EVs, providing 
the necessary power for propulsion. However, batteries have limited energy density, which 
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limits the driving range of EVs. Fuel cells offer high energy density and longer driving range, 
but their performance is affected by varying power demands and environmental conditions. 
Supercapacitors provide high power density and fast charging capabilities, but they have 
limited energy density. Hybrid battery systems integrate these different energy storage devices 
to provide an efficient and flexible energy management system for EVs. The management of 
effective power is crucial to the efficiency and longevity of hybrid battery systems. The energy 
management system must optimize the use of different energy storage devices, ensuring that 
they are used in the most efficient and effective way. The energy management system should 
also consider the varying power demands of EVs, which can change rapidly depending on 
driving conditions and terrain. DNNs that can learn complex relationships between inputs and 
outputs, making them suitable for modeling and controlling the behavior of energy storage 
devices in EVs. The use of DNNs can lead to more efficient and accurate energy management 
systems, improving the energy efficiency and performance of hybrid battery systems in EVs. 
Many researches based on power management in hybrid battery systems were studied. A plug-
in hybrid EV power managing approach that consider battery's ideal depth of discharge to 
increase fuel efficacy [1]. Pontryagin's minimum principle and Dynamic programming were 
used in a hierarchical power managing for energy devices in hybrid EVs to maximize energy 
efficiency [2]. For Power storages in EVs, a real-time power managing method has been 
developed that reduces energy usage by using Pontryagin's minimal principle [3]. Hybrid 
energy storage systems in EVs might benefit from a reinforcement learning-based power 
managing method to increase efficiency and battery lifespan [4]. A DDPG method is used in 
an managing power technique for HEV to balance battery life and fuel efficiency [5]. A battery 
and ultracapacitor-based fuel-cell HEV with an improved energy management [6]. To 
maximize efficiency and cut emissions, a plug-in HEV has been designed with an adaptive 
hierarchical power managing methods [7]. Hybrid energy storage device with a semi-active 
battery and supercapacitor for use in EVs that increases energy efficiency and lessens battery 
deterioration [8]. For electric automobiles with plug-in hybrid system, a naturalistic data-driven 
predictive energy management approach is being developed that uses machine learning to 
anticipate future driving conditions and maximize energy efficiency [9]. Connectivity and 
damping assignment passivity-based control, a revolutionary energy management strategy for 
hybrid electric cars that leverages to lessen battery deterioration [10]. For storage devices in 
HEV, a DDRL based HEM technique has also proposed [11]. 
  

2. LITERATURE SURVEY 

Li, W. et.al (2021) to meet the power and energy requirements of battery EV, an HBS with 
a HE and HP battery pack is needed. A multi-objective energy management method based on 
cloud system using a DDPG was developed by the researchers for this hybrid architecture. The 
energy managing as a primary objective to improve the system's electrical and thermal safety 
while lowering energy loss and ageing expenses. 

Hu, X. et.al (2019) three velocity prediction algorithms that were used inside a framework 
for model predictive control were fully compared and analysed. The predicted velocities were 
used to optimise the fuel cost of a power-split HEV. Each vanishing horizon was subject to the 
prediction approach. 
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Du, R. et.al (2020) a temperature and battery aging-aware predictive managing of energy 
technique for parallel HEV. In urban bus transportation, the model predictive control (MPC)-
based technique was designed and assessed. 

Li, L. et.al (2019) vehicle speed and controlling power prediction was created for situations 
when hybrid automobiles' lateral dynamics are crucial. Building a speed of the vehicle 
prediction controller with the concept of using less frictional brakes and more regen braking 
included calculating the vehicle's maximum cornering speed using the tire-road frictional force 
and the GPS signal. 

Anselma, P. G. et.al (2021) a number of SOH sensitive approaches have been put forward, 
but there hasn't been any experimental confirmation. The purpose of the work was to close this 
gap by presenting an off-line, multi-objective, and optimum HEV management strategy that is 
sensitive to battery SOH. To verify the method's capacity to forecast battery longevity, dynamic 
programming (DP) was performed. 

Hu, J. et.al (2020) an AWTFL control power manging technique to regulate power 
distribution in HESS for EV that include batteries and supercapacitors. Driving cycle was 
known to have a substantial influence on the operation of EMS, thus the technique was created 
to be based on DPR. By adjusting to variations in driving patterns, the strategy aimed to achieve 
optimum power distribution in the HESS, which would increase the electric vehicle's 
performance and efficiency. 

Podder, A. et.al (2021) selecting a suitable control strategy for HEV applications may be 
difficult since these systems, when combined with various control techniques, produced a 
diversity of HEV kinds. An extensive assessment of significant data about the energy storage 
technologies utilised in HEVs was presented in a publication. Moreover, the article discussed 
several optimization topologies that were accessible depending on various control schemes and 
vehicle advancements. 

Xiong, R. et.al (2018) studied the distribution of optimal power between ultracapacitor and 
the battery may be achieved by using a Real-Time managing energy method based on RL, 
which was suggested as a solution to this problem. A stationary Markov chain was utilized for 
determining the power transition probability matrices after choosing a lengthy driving cycle 
with a variety of speed fluctuations. A control technique that attempted to reduce HESS's 
energy loss was subsequently developed using an RL algorithm. 

Uebel, S. et.al (2019) AEMS, which was a crucial component of the optimization issue, 
was proposed. The features of dynamic sources and drive cycle power demand was considered. 
By more efficiently using the quantum wave notion to explore the search space, the Butterfly 
Optimization Algorithm (BOA) was modified to address the hybrid energy source optimization 
issue. 

Zhang, Q. et.al (2020) a two-level Model Predictive Control (MPC) strategy was introduced 
to alleviate the load capacitence. The method utilised a Sequential Quadratic Program (SQP) 
to calculate a target set for a lower layer, which then used Pontryagin's Maximum Principle 
and Discrete State-Space Dynamic Programming to establish the best control for a short 
horizon. 

Zhao, B. et.al (2019) a real-time EM control approach that could accomplish particular 
targets was studied. WT, NN, and FL were used to create the technique. In order to successfully 
match the properties of the battery and supercapacitor, the wavelet transform was used to 
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extract different frequency components of the load power requirement. 
East, S. et.al (2018) a novel 3-D model of stochastic Markov chain based online driving 

cycle prediction approach for hybrid electric vehicles (HEV). A driving-cycle-aware energy 
management approach was then developed 

Tan, H. et.al (2019) a convex design of the MPC optimization for EMS in HEV was 
proposed, along with a method for its resolution called the ADMM. 

Torres-Moreno, J. L. et.al (2018) Actor-Critic, a novel EM approach with a DRL 
framework, was introduced. Actor-Critic used a DNN called the actor network for continuous 
control signals outputs, by increasing the EMS's effectiveness. 

Du, G. et.al (2019) the effects of PV systems on microgrid storing and EV use. More 
research was considered required due to the growing use of these systems in the home sector 
and the creation of new technology, like more effective solar panels. According to the research, 
the systems were particularly intriguing in profitable because of their more predictable daily 
patterns of power use, which often took place during the hours of maximum solar radiation. 

Drawbacks of these energy management strategies include their high computational 
complexity, limited real-time adaptability, and limited applicability to specific types of vehicles 
or driving scenarios[27]. These strategies also rely heavily on accurate models of the vehicle 
and its components, which can be difficult to obtain and maintain in practice. Additionally, 
some strategies may require additional sensors, hardware, or software, adding to the overall 
cost of the vehicle or energy management system[28]. 

To overcome all these challenges, we propose an efficient EMS for hybrid battery systems 
in EVs using DNNs. We demonstrate the effectiveness of this approach in controlling fuel cells 
in EVs, and we highlight the advantages and contributions of the proposed system. This study 
contributes to the development of advanced energy management systems for EVs and promotes 
the use of sustainable and efficient transportation systems. 

3. PROPOSED METHODOLOGY 

The methodology involves data collection and preprocessing, development and training of a 
DNN model, and real-time energy management using the trained model. The approach includes 
the integration of different types of storage energy devices, like fuel cells, supercapacitors, and 
batteries, to optimize energy flow and improve the performance and efficiency of electric 
vehicles. The overall methodology is shown in flow chart in figure 1. 
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Figure 1: Flow Diagram 

3.1 Data Collection 

The first step in developing an efficient energy management system using deep neural 
networks (DNNs) for hybrid battery systems in electric vehicles (EVs) is to collect the data 
required for the development of the model[29]. The data collected will include the power 
requirements of the EV under different driving conditions, the characteristics of the different 
energy storage devices used, and the environmental conditions. 

3.2 Data Pre-Processing 

Once the data has been collected, the next step is to preprocess it. Data preprocessing 
involves cleaning, transforming, and preparing the data so that it is suitable for use in the DNN 
model[30]. The collected data may contain errors, missing values, or outliers, which can 
adversely affect the performance of the DNN model. Therefore, it is important to preprocess 
the data to remove any noise or anomalies. The preprocessing of the data will involve the 
following steps: 

3.2.1 Data Cleaning:  
In this process the determining and rectifying any errors or inconsistencies in the data takes 

place. For instance, missing data can be imputed using techniques such as mean imputation, 
median imputation, or interpolation. Outliers can also be removed using statistical techniques 
such as z-score or interquartile range (IQR). 

3.2.2 Feature Scaling:  
The data may contain features with different scales. Scaling of features improve the DNN 

model performance. Common techniques for feature scaling include normalization, min-max 
scaling, and standardization. 

3.2.3 Data Normalization:  
Normalization is a technique used to transform the data so that it has a Gaussian 

distribution. This can improve the convergence of the DNN model and make it less sensitive 
to the initial values of the weights. 

Data collection 
 

Pre-Processing 

Development of DNN 

Integration of Hybrid Battery System 

Performance Evaluation  
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3.3 DNN Model Development: 

The next step in the process is to develop a DNN model that can efficiently manage the energy 
flow between different energy storage devices in the hybrid battery system. The DNN model 
will consider the power requirements of the EV, the characteristics of the different energy 
storage devices, and the environmental conditions. The model will be trained using the 
preprocessed data[31-32]. The DNN model takes input features as its input and produces an 
output that determines the power flow between different energy storage devices. The input 
features may include the power demand, the battery SOC, the temperature, and other relevant 
parameters. The DNN model include a layer structure with input layers, a fully connected layer, 
and a regression output layer. The output from the model will be the control signal for the fuel 
cell, which is a time-based output. In this case, only three layers will be used for the DNN. The 
layer construction of the DNN model is as follows: 

     𝐈𝐧𝐩𝐮𝐭 𝐋𝐚𝐲𝐞𝐫
 |

𝐇𝐢𝐝𝐝𝐞𝐧 𝐋𝐚𝐲𝐞𝐫
 |

𝐎𝐮𝐭𝐩𝐮𝐭/𝐑𝐞𝐠𝐫𝐞𝐬𝐬𝐢𝐨𝐧 𝐋𝐚𝐲𝐞𝐫

 

Figure 2: Layer Structure of DNN 

Input layer: The input layer is responsible for taking in the input features, such as the power 
demand, battery SOC, and other relevant parameters. 
Fully connected layer: The fully connected layer is responsible for computing a weighted sum 
of the input features and passing the result through an activation function. The output size of 
this layer is 1, as the DNN model is used to control the fuel cell. 
Regression output layer: The regression output layer is responsible for computing the final 
output of the DNN model. This layer takes the fully connected layer’s output and produces the 
control signal for the fuel cell, which is a time-based output. The mathematical representation 
of the DNN model can be expressed as follows: 
Let A be the input feature vector of the DNN model Z, which includes the PD, SOC of the 
battery, and other relevant parameters. The output of the DNN model, C, is the control signal 
for the fuel cell. 

𝐶 = 𝑍(𝐴) − − − − − (1) 
where Z represents the deep neural network with the layer structure described above. 
During the training process, the weights of the neurons in the fully connected layer are adjusted 
to error reduction between the predicted output and the actual output. The optimization 
algorithm used for training the DNN model could be stochastic gradient descent (SGD) or 
Adam. 
The output of the input layer, ℎ , is a vector of input features A: 

ℎ = 𝐴 − − − − − (2) 
The output of the hidden layer, ℎ , is obtained by computing a weighted sum of the input 
features, applying an activation function, and adding a bias term: 

ℎ =  𝑓 (𝑊 × ℎ  +  𝑏 ) − − − − − (3) 
where f is the function of activation, the weight matrix is 𝑊  for the hidden layer, and bias 
vector 𝑏  for the hidden layer. 
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The output of the output layer, C, is obtained by computing a weighted total output of the 
hidden layer and adding a bias term: 

𝐶 =  𝑊 × ℎ  +  𝑏 − − − − − (4) 
where the weight matrix 𝑊   for the output layer, and 𝑏  is the bias vector for the output layer 
The activation function used in the hidden layer is typically a nonlinear function such as the 
rectified linear unit (ReLU) function: 

𝑓(𝐶) =  𝑚𝑎𝑥 (0, 𝐶) − − − − − (5) 
The output of the output layer is a single value that represents the control signal for the fuel 
cell: 

𝐶 =  𝑓𝑐 − − − − − (6) 
The input features x may include variables such as power demand PD, state of charge (SOC) 
of the battery, and environmental conditions such as temperature T and humidity H: 

𝐴 =  [𝑃𝐷 + 𝑆𝑂𝐶 + 𝑇 + 𝐻] − − − − − (7) 
The weight matrix 𝑊  and bias vector 𝑏  are learned during training to optimize the 
performance of the DNN model: 

𝑊 , 𝑏 =  𝐴𝑟𝑔  (𝜃) − − − − − (8) 
where 𝜃 loss is the objective function that measures the predicted output difference of the DNN 
model and the actual output. 
The weight matrix 𝑊  and bias vector 𝑏  are also learned during training: 

𝑊 , 𝑏 =  𝐴𝑟𝑔  (𝜃) − − − − − (9) 
The loss function 𝜃 may be a mean squared error (MSE) loss or another appropriate loss 
function: 

𝜃 =  𝑀𝑆𝐸 𝐶 , 𝐶 − − − − − (10) 

where 𝐶  is the actual output and 𝐶  is the predicted output. 

During training, the weights and biases of the DNN model are updated using backpropagation 
and gradient descent: 

𝑊, 𝑏 =  
𝑊 −  𝜑 ×  𝜕𝑊,

 𝑏 − 𝜑 ×  𝜕𝑏
− − − − − (11) 

where W and b represent the weight matrices and bias vectors for all layers in the DNN model, 
Z and 𝜕𝑊 and 𝜕𝑏 represent the gradient loss function regarding W and b, respectively. The 
learning rate is a hyperparameter that determines the size of the updates to the weights and 
biases during training. 
The power requirements of the EV can be represented by: 

𝑇  =  𝑇  + 𝑇 − − − − − (12) 
where 𝑇  is the total power requirement, 𝑇  is the power required to drive the vehicle, and 
𝑇  is the power required for auxiliary systems. 
The energy stored in the battery can be represented by: 

𝐸  =  𝑃 + 𝐸 − − − − − (13) 

where 𝑇  is the battery energy storage in the and supercapacitor at time t, 𝑃  is the power 
requirement at time t, and 𝐸  is the initial energy of battery and supercapacitor. 
The output power in the fuel cell can be represented by: 
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𝑃𝑓𝑐 =  𝑍 𝑃𝑑𝑟𝑖𝑣𝑒 , 𝐸 , 𝐸 − − − − − (14) 

where 𝑃𝑓𝑐  is the power output of the fuel cell at time t, 𝑃𝑑𝑟𝑖𝑣𝑒  is the power required to drive 
the vehicle at time t, 𝐸  is the initial energy stored in the battery, and 𝐸  is the 

environmental temperature. 
Algorithm for the DNN model 

Input: Preprocessed data containing feature values and target values 

Output: Control signal of fuel cell to manage the energy flow in the hybrid battery system 

Step 1: Initialize the DNN model with the specified number of layers, neurons per layer, and 
activation functions 

Step 2: Split the preprocessed data for train and test sets 

Step 3: Train the DNN model using the training set with a specified number of power 
requirements and optimization algorithm 

Step 4: Evaluate the DNN performance of the trained model on the testing set 

Step 5: If the performance is satisfactory, save the trained model for future use 

Step 6: Otherwise, adjust the hyperparameters and repeat steps 2-5 until satisfactory 
performance is achieved 

Step 7: In real-time, collect data on the necessities of power in electric vehicle, the 
characteristics of the energy storage devices, and the environmental conditions 

Step 8: Preprocess the collected data by cleaning, scaling, and normalizing it to a suitable 
format for use in the DNN model 

Step 9: Feed the preprocessed data into the trained DNN model to obtain the control signal 
for the fuel cell 

Step 10: Use the control signal to manage the flow of energy between the different energy 
storage devices in the hybrid battery system 

Step 11: Repeat steps 7-10 continuously to adjust to driving conditions changes and optimize 
the energy flow in the hybrid battery system. 

 
Pseudocode for the DNN model 
function dnn_energy_management(preprocessed_data): 
    // Initialize the DNN model 
    model = initialize_dnn_model() 
 
    // Split data into train and test sets 
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    X_train, X_test, y_train, y_test = split_data(preprocessed_data) 
 
    // Train the DNN model 
    model = train_dnn_model(X_train, y_train) 
 
    // Evaluate the performance of the trained DNN model 
    performance = evaluate_dnn_model(model, X_test, y_test) 
 
    // Repeat training and evaluation until satisfactory performance is achieved 
    while performance < threshold: 
        // Adjust hyperparameters 
        model = train_dnn_model(X_train, y_train) 
        performance = evaluate_dnn_model(model, X_test, y_test) 
 
    // Use the trained DNN model for real-time energy management 
    while True: 
        // Collect and preprocess data 
        data = collect_data() 
        preprocessed_data = preprocess_data(data) 
 
        // Use the DNN model to obtain control signal 
        control_signal = model.predict(preprocessed_data) 
 
        // Manage energy flow in the hybrid battery system using the control signal 
        manage_energy_flow(control_signal) 
 
        // Repeat for continuous energy management 

  
The trained DNN model is used to manage the energy flow between different energy 

storage devices in the hybrid battery system. The DNN model is adapted in changing driving 
conditions and optimize the flow of energy between different storage devices of energy to meet 
the power requirements of the EV. 

4. RESULTS AND DISCUSSION 

The results of the study show that the use of a deep neural network in managing the energy 
flow between different energy storage devices in a hybrid battery system can improve the 
energy management efficiency of electric vehicles. The use of the DNN for fuel cell control 
resulted in better fuel consumption compared to the use of traditional PI controllers and 
machine controllers for battery management. The model was able to satisfy variable power 
requirements, as indicated by the different loads at different speeds, using a combination of 
battery and supercapacitors. Figure 3 training progress output for the network is as follows 



 

 

Semiconductor Optoelectronics, Vol. 42 No. 1 (2023) 
https://bdtgd.cn/ 

804 

 
Figure 3: Training Progress 
The proposed control model is represented in figure 4. 

 
Figure 4: Proposed model 
Figure 5 represents the overall all model and power requirements of EV’s for efficient energy 
management. 
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Figure 5: Overall Model 
The output results of the system are as follows; 

 
Figure 6: Fuel cell 
The overall HBS performance was improved, with the battery, fuel cell, and ultracapacitors all 
contributing to the power supply.  
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Figure 7: Battery capacity 
Figure 7 shows the overall battery capacity of the proposed model. Figure 8, 9, 10 shows the 
load, ultracapacitor and power capacity management of the proposed system. 
 
 

 
Figure 8: Load 
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Figure 9: Ultracapacitor 
 

 
Figure 10: Power 
Overall, the study highlights the potential for deep neural networks to improve energy 
management in electric vehicles and increase their efficiency. 

5. CONCLUSION 

The study has demonstrated that the use of a DNN can significantly improve energy 
management efficiency of electric vehicles. The proposed control model, which utilizes a 
combination of battery, fuel cell, and ultracapacitors, was able to satisfy variable power 
requirements and optimize energy flow between different energy storage devices. The use of 
the deep neural network for fuel cell control resulted in better fuel consumption compared to 
traditional PI controllers and machine controllers for battery management. The overall HBS 
performance was improved, with the battery, fuel cell, and ultracapacitors all contributing to 
the power supply. The results suggest that the proposed model can be used for efficient energy 
management in electric vehicles, which can help in reducing consumption of energy and 
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improving the overall system efficiency. The study highlights the potential for deep neural 
networks to play a significant role in improving management of energy in EVs and reducing 
their environmental impact. 
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