

Semiconductor Optoelectronics, Vol. 43 No. 1 (2024), 155-171
https://bdtgd.cn/

155

A ROBUST MACHINE LEARNING-BASED FRAMEWORK TO LEVERAGE
CLASSIFICATION OF MALWARE

Lingaraj Sethi author1*, Dr prof Prashanta Kumar Patra2

1*Research Scholar, Computer Science and Engineering, Biju Patnaik University of
Technology, Rourkela

2Dean, SRIC, Computer Science and Engineering,SOA University Bhubaneswar, Odisha

Abstract

Malicious software, or malware, is a growing problem in today's cyber landscape and threatens
the availability, confidentiality, and integrity of digital information. An effective malware
detection system can be designed with the help of ensemble machine-learning models,
according to this research paper. This research makes use of the Canadian Institute for
Cybersecurity's CIC-Malmem2022 dataset, which was designed for studies on complicated
malware classification. To strengthen the malware detection model's accuracy and resilience,
the suggested approach combines Principal Component Analysis, Recursive Feature
Eliminator, Decision Trees, Light Gradient Boosting Machine, and Gradient Boosting.
Although the ensemble model achieved a high level of accuracy (99.96%) on the test set, the
results demonstrate its effectiveness. Model hyperparameter tuning reveals best-practice
parameters, and the ensemble confusion matrix delves into classification efficacy. Analyses
comparing the proposed approach to current methods show that it is superior at detecting
malware. The study finishes with suggestions for a safe environment to deploy the model and
for frequent updates to address shifting cybersecurity threats.

Keywords:Malware, Malicious Software, Spyware, Adware, Gradient Boosting.

1. Introduction

In recent years, advancements in computer systems and the Internet have greatly improved
human existence. Almost anything can be done online, from socializing to making financial
transactions to tracking a person's bodily changes, etc. These advancements entice
cybercriminals to commit crimes online instead of in the actual world. Cybercrimes cost the
global economy trillions of dollars, according to recent studies from both academia and
industry[1]. Malware is a common tool used by cybercriminals to initiate cyberattacks.
Malicious software is defined as any program that uses a victim's computer to carry out
malicious or suspicious tasks. Threats like viruses, worms, Trojan horses, rootkits,
ransomware, and so on fall under several malware categories. Malware comes in many forms,
and it may steal sensitive information, launch DDoS attacks, and disrupt computer systems [2].
Malware has evolved to the point that it may evade detection by using tactics like encryption
and packing[3]. These new strains were able to propagate because they preyed on people's
confidence. Examples of well-known vectors for malware transmission include opening

Semiconductor Optoelectronics, Vol. 43 No. 1 (2024)
https://bdtgd.cn/

156

attachments in emails, downloading malicious apps, and viewing and downloading files from
malicious websites.

Identifying malware in its early stages is crucial for preventing system compromise. The term
malware detection refers to the steps used to determine if a file is fraudulent or not[4]. There
is an additional phase in malware categorization. Malware categorization is identifying the
family or category of malware that the file belongs to once it has been determined to be
malicious[5]. Malware detection is a three-step process:

 The right tools are used to examine malware files.

 The files that have been evaluated are used to extract both static and dynamic
characteristics.

 Features are organized in specific ways to distinguish between harmful and harmless
software[6].

1.1 Types of Malware

The term malware describes any piece of software whose express purpose is to cause damage
or exploit systems, networks, or data. Many distinct kinds of malicious software exist, each
with its own set of traits and objectives. Some examples of malware are discussed below in
figure 1:

Figure 1: Types of Malware[7]

 Viruses:Viruses may infect even perfectly legal executable files and then multiply
themselves whenever the infected application is executed. When infected files are
shared, they have the potential to infect additional computers and files[8].

 Worms:Worms are programs that can replicate themselves and propagate across
networks without any human interaction. Their favorite vector for spreading is taking
advantage of security holes in software or operating systems.

 Trojan Horses:Trojan horses are dangerous programs that masquerade as safe
software. Trojans differ from viruses and worms in that they do not self-replicate;
instead, they trick people into running them by making themselves appear as innocuous
files[9].

A ROBUST MACHINE LEARNING-BASED FRAMEWORK TO LEVERAGE CLASSIFICATION OF MALWARE

157

 Spyware:The goal of spyware is to stealthily monitor users and gather their personal
information. Without the user's knowledge, it covertly logs their login information, web
browsing habits, and keystrokes[10].

 Adware:Adware is software that sneaks advertisements onto consumers' devices.
Though harmless most of the time, its disruptive behavior could lead to system
performance problems[11].

 Rootkits:Malicious software, and rootkits, in particular, are created with the express
purpose of evading detection by antivirus programs and system administrators. After
infiltrating a system, rootkits can remain undetected while granting an attacker
complete system privilege[12].

 Keyloggers:Keylogger software or hardware secretly captures computer or mobile
device keystrokes. Keyloggers may be used to monitor children's internet activity or
workplace efficiency, or they can be used maliciously to obtain sensitive data[13].

1.2 Malware Analysis

In addition to behavioral categorization, malware execution privileges should be considered.
Malware becomes more damaging and tougher to detect and analyze as it gets right. Unknown
binary code analysis may infect. The worst-case scenario is that the code under scrutiny
irreparably harms the system without the user even realizing it has happened. A virus could
compromise the integrity of reports, cause samples to be incorrectly labeled, or even put the
entire company at risk.

A total of four protective rings, numbered zero through three, surround the Intel x86 central
processing unit (CPU)[14]. The poll excludes Rings 1 and 2, which Windows does not utilize.
More read/write permissions are granted to programs operating at lower protection rings.
Protection rings underpin the four privilege levels:

 User mode (Ring 3): -User mode allows RAM loading of new process code. Anything
that just needs user mode rights is a user mode code. Any user-installed applications
and substantial components of Windows (even the Administrator account has user
mode rights) are included. Malware may be removed by reversing its modifications or
reformatting the system when studying user-mode malware.

 Kernel mode (Ring 0): -System resources are managed by the kernel, which is an
operating system component. It controls the whole system, and it also has features for
talking to the hardware. Ring 0 is where the kernel runs, with root or kernel mode
privileges. The operating system kernel and system drivers are the only ones allowed
to use this security ring [15]. The OS may then manage resources like CPU time and
memory allocation, as well as physical devices, and user mode programs. Kernel mode
code can load new code into the kernel whenever necessary, whenever new hardware
is connected to the system[16]. The new device may be interacted with using this
specific sort of code, which is known as a driver. Malware may also be known as a
rootkit if it manages to enter the kernel of the system and execute commands with root
capabilities [17].

Semiconductor Optoelectronics, Vol. 43 No. 1 (2024)
https://bdtgd.cn/

158

 Hypervisor (Ring -1): -A hypervisor is software that allows many virtual operating
systems to run on top of one another on a single piece of hardware. Although it is not a
real protection ring, a hypervisor is considered to be operating in Ring -1 since it has
higher rights than kernel mode. A hypervisor may be: Multiple operating systems may
run simultaneously on type 1 hypervisors. Cybercriminals have been aware of
hypervisors' capabilities for quite some time. An exploitable hypervisor, for instance,
might be set up to ensnare an OS in a virtual machine and remove its administrative
rights; Malicious hypervisors may take over operating systems when they obtain
control of the kernel in this manner. Hypervisor code execution is invisible to any
operating system-installed analysis tool. Virtual machine-based rootkits are malicious
software that installs bad type 1 hypervisor [18,19]. Hypervisors of the type 2 kind
enable the operation of virtual machines.

 Hardware (Ring-3): -Malware, such as the Ring-3 rootkit, may infect hardware
components and then conduct attacks against other devices outside of the CPU without
worrying about being detected [20]). Malicious firmware updateis a typical method of
gaining access to protected electronics. The firmware is the programming that runs the
gadget that is embedded in every physical component. Occasionally, the firmware may
be upgraded to address security issues and resolve defects. But if an attacker finds a
hole in the update procedure, they may exploit it to install malicious firmware that the
CPU cannot detect, giving them access to the machine. One prevalent kind of hardware
infection is USB [21], IoT, and medical devices.

2. Related Work

This section provides a thorough evaluation of the research published in A Robust Machine
Learning-based Framework to Leverage Classification of Malware. Also considered are the
relevant works of many writers.

2.1 Malware DetectionUsing Machine Learning

Hussain et al., (2022)[22]discovered a malware detection system that relies on Machine
Learning (ML) to assess the safety or danger of a Portable Executable file by analyzing data
extracted from its header. Random Forest, Decision Tree, AdaBoost, Gaussian Naive Bayes
(GNB), and Gradient Boosting are among the ML models used to fight the virus after the author
does data preprocessing. To choose the best ML model for the given issue, it also compares
several models. The Random Forest (RF) achieved the highest accuracy level of 99.44% in
detecting malware, according to the trial data. Use this to create a Windows desktop application
that checks for malware and lets users customize the scanning process.

Shoaib and Feng, (2022)[23]discovered that to enhance the security of computer networks, it
was possible to identify malicious traffic by comparing the results of malware analysis and
detection using ML algorithms to determine the difference in correlation symmetry (Naive
Byes, SVM, J48, RF, and the proposed method). Out of all the classifiers tested, DT(99%),
CNN(98.76%), and SVM (96.41%) had the highest detection accuracy. In a specific dataset, it
evaluated the efficacy of DT, CNN, and SVM algorithms in detecting malware using a small
FPR. CNN attained 3.97%, SVM 4.63%, and DT 2.01%. Considering how common and
advanced malicious software is, these results are significant.

A ROBUST MACHINE LEARNING-BASED FRAMEWORK TO LEVERAGE CLASSIFICATION OF MALWARE

159

Barath and Venkata, (2020) [24]proposed employing a combination of convolutional and
recurrent neural networks as a method for malware software classification. While the proposed
ensemble method attains a new benchmark of 99.8 percent overall accuracy, the LSTM
network obtains 97.2% accuracy when distinguishing assembly files and 99.4% accuracy when
classifying finished files.

Sumitand Amol, (2020) [25]presented implementations of convolutional neural networks
(CNNs) and hybrid CNNs (CNNs+SVMs). Using CNNs as an automated feature extractor is
more efficient than the existing methods. Evaluate this in comparison to other CNN models
that are currently available: VGG16 (96.06%), ResNet50 (97.11%), InceptionV3 (97.22%),
and Xception (97.56%). Among them, the proposed model's 98.03 percent accuracy is the most
impressive.

Kumar et al., (2019) [26]utilizedanRF classifier, reached a static technique and got the
maximum classification accuracy of 97.95%. The second reason the author utilized a dynamic
method was that static analysis isnot always enough to decipher malware that has been encoded
or packaged. At its peak, the RF classifier allowed us to get a classification accuracy of 99.13%.
Finally, what it calls the Hybrid technique combines static and dynamic methods to get around
the problems with each. Using Random Forest, our studies obtained a maximum classification
accuracy of 99.74% in the first four seconds of malware operation, allowing us to categorize it
into kinds.

2.2 Malware Detection Using Deep Learning

Alomari et al., (2023)[27]displayed an effective system for detecting malware using deep
learning and feature selection. To detect malware and differentiate it from harmless actions,
two databases are used. Using preprocessed datasets for feature selection based on correlation
creates new datasets. Improving deep learning models using feature selection and LSTM on
different versions of feature-selected datasets. Several metrics, including recall, accuracy,
precision, and F1-score, are used to evaluate models following training. Feature selection can
preserve the original dataset performance in some cases, according to the study. The degree to
which performance varies is variable across datasets. The feature reduction ratios in the first
dataset range from 18.18% to 42.42%, and the performance degradation is between 0.07% and
5.84%. The second set of data shows a reduction rate between 81.77% and 93.5% and a
performance degradation between 3.79% and 9.44%.

Masum et al., (2022)[28] provided a framework for ransomware detection and prevention that
is based on feature selection and uses various ML methods, such as designs based on neural
networks, to categorize security levels. Several ML methods were used for ransomware
classification, including Decision Tree (DT), RF, Naïve Bayes (NB), Logistic Regression (LR),
and classifiers based on Neural Networks (NN). To test our methodology, the author only used
one ransomware dataset.

Sitaula et al., (2022)[29]evaluated thirteen distinct DL models that have already been trained
to identify monkeypox. First, the author analyzes the outcomes using four well-established
metrics: Accuracy, Precision, Recall, and F1-score. Then, it fine-tunes them by adding
universal custom layers to each of them. The authoruses a majority vote on the probabilistic

Semiconductor Optoelectronics, Vol. 43 No. 1 (2024)
https://bdtgd.cn/

160

outputs derived from the best-performing DL models to ensemble them and increase overall
performance. Using a publically accessible dataset, it conducts tests that demonstrate the
effectiveness of our suggested ensemble strategy. The results show an average Precision of
85.44%, Recall of 85.47%, F1-score of 85.40%, and Accuracy of 87.13%. The suggested
strategy may be useful for health practitioners doing mass screenings, according to these
promising findings that surpass the state-of-the-art methodologies.

He and Dong, (2019) [30]created a malware detection system that transforms malware files
into visual representations and then classes those representations using CNNs. CNNs are
trained with spatial pyramid pooling layers (SPP) to handle inputs of varying sizes. The author
ran our system on both original and modified data to find out how effectively SPP and picture
color space (greyscale/RGB) function. Duplicate API injection can be prevented with greyscale
imaging, and the results show that memory restrictions make naïve SPP implementation
impractical.

Yuxin, and Zhu, (2019) [31]utilized a deep belief network (DBN) to detect malware by
describing its opcodes, which are sequences of instructions. Three baseline malware detection
models are evaluated about DBNs in terms of performance: one that utilizes decision trees
(DT), one that employs support vector machines, and the third that uses the k-nearest neighbor
algorithm. When compared to the baseline models, the DBN model achieves better detection
accuracy, according to the experiments.

3. Research Methodology

In this part, the CIC-Malmem2022 dataset for malware classification is presented. Various
tools, including PCA for feature extraction and RFE for feature selection, as well as ensemble
approaches, which involve DTs,LightGBM, and Gradient Boosting, are explored further in the
discussion of malware detection issues.

3.1 Dataset Description

The Canadian Institute for Cybersecurity has released CIC-Malmem2022, an academic dataset
designed for studies on malware classification, with a focus on obfuscated malware in
particular. Produced by running a feature extraction procedure on memory dumps, this dataset
is structured. There are 29,298 benign records and 29,298 malicious records in the 58,596-
record dataset.

3.2 Technique Used

In this part, information is provided on the tools that were employed.

 Principal Component Analysis

Malware detection feature extraction is based on Principal Component Analysis (PCA). This
method employs PCA on a massive dataset consisting of malware samples. By lowering the
number of features, PCA decreases the data set, which might increase the detection algorithm's
overall performance [32]. Primary component analysis (PCA) reduces the number of
components involved in a function by evaluating factors including file size, API calls, system
calls, opcode sequences, and byte n-grams [33]. By concentrating on the main components,
PCA helps remove noise and capture vital information, allowing for the differentiation of

A ROBUST MACHINE LEARNING-BASED FRAMEWORK TO LEVERAGE CLASSIFICATION OF MALWARE

161

benign from malicious files. Using PCA to simplify malware data allows for the creation of a
detection system that is both simple and effective [34].

 Recursive Feature Elimination

A well-liked feature selection method in machine learning, Recursive Feature Elimination
(RFE) identified the most critical process features [35]. In malware detection, RFE allows us
to choose the most important traits that differentiate between false positives and real samples
[36]. The significance of RFE in detecting functionality is crucial since it reveals patterns of
harmful activity. The feature-oriented strategy of RFE improves the model's generalizability
and prevents overfitting [37]. File size, API calls, device calls, opcode sequences, and byte-n-
grams are some of the essential data that RFE emphasizes, which improves the model's ability
to identify malware [38]. When RFE is involved in feature set refining, a detection program
may accurately and efficiently identify many different kinds of malware strains [39].

 Decision Tree

When it comes to detecting and classifying malware, DTis an effective and definable way of
doing so [40]. Malware detection often uses DT as classifiers. DT can classify files or system
function types as risky or unhealthy by extracting attributes when trained on labeled data sets
with instances of both types of software [41]. To improve the accuracy and simplicity of the
model in general so has increased, cluster methods combine multiple DTs [42]. When it comes
to malware detection, this can improve the generalizability of the model and its ability to detect
different types of malicious behavior [43].

 Light Gradient Boosting Machine

Large data sets with high dimensionality [44] are valid for LightGBMs. In general, negative
research databases have more negative samples than non-negative ones [45]. A framework for
dealing with imbalanced datasets in LightGBM helps improve model performance in smaller
classes [46]. The ensemble learning approach supported by LightGBM allows for the
integration of multiple simple models into one complex one [47]. This can be useful in
improving the accuracy of malware detection algorithms in general [48].

 Gradient Boosting

Gradient Boosting is an MLmethod that has been successful in several fields including virus
detection. Some weak learners such as DT can have their predictions combined to form stronger
learners using this ensemble learning technique. As an ensemble approach, many weak learners
are used to produce a single strong one [49]. Overall, this ensemble technique enhances both
model accuracy and generalizability. Gradient Boosting is resistant to various types of viruses
and makes use of the predictions of many DTs [50]. It is this way that it can capture complex
data relationships [51].

4. Proposed Methodology

Figure 2shows how the research will be done and then its workflow will be detailed in
subsequent sections. This section deals with the main steps for developing a model for detecting
malware. Several significant stages are involved inthe creation of a system for the detection of
malware. The complete dataset can be generated by gathering many samples from different

Semiconductor Optoelectronics, Vol. 43 No. 1 (2024)
https://bdtgd.cn/

162

families and subtypes of malware. Later on,PCA is used to extract opcode sequences, byte n-
grams, file size, API calls, and system calls. When data is missing or partial, it is important to
normalize and standardize the attributes to make sure that samples are uniform. When it comes
time for feature selection, dimensionality reduction techniques like Wrapper RFE are employed
to streamline the dataset while preserving all the relevant information. DT, Support Vector
Machines, and CNN are some of the top machine-learning methods to consider in the fourth
stage. Ensemble methods enhance accuracy by combining predictions from several models.
Using a validation set, the model may be fine-tuned and made accurate after training. The
model's accuracy, precision, recall, F1 score, and ROC curve analysis are assessed on a test set
in the last phase. Confusion matrices are used to analyze malware categories. In adversarial
testing, the model is trained to be more resistant to malicious samples that are intentionally
changed. The last step in making sure the model can identify new types of malwares is to either
release it into a test environment or provide an API for it to use. To keep the model up-to-date
and effective against new malware threats, data must be updated often.

Figure 2. Proposed Methodology

4.1 Proposed Algorithm

Start

1. Data Collection:

Obtain a collection of malware samples representing different families and subtypes.

Let 𝑴 = {𝒎𝟏,𝒎𝟐, … ,𝒎𝒏}represent the collected malware samples.

2. Feature Extraction (Principal Component Analysis):

A ROBUST MACHINE LEARNING-BASED FRAMEWORK TO LEVERAGE CLASSIFICATION OF MALWARE

163

Apply PCA to profile malware samples.

Let𝑭 = {𝒇𝟏, 𝒇𝟐, … , 𝒇𝒌}act as representations of the features that were extracted, which
comprise byte n-grams, opcode sequences, system calls, API calls, and file size.

3. Normalization and Standardization:

Make sure the extracted features are uniform by normalizing and standardizing them.

Let's𝑵 = {𝒏𝟏, 𝒏𝟐, … , 𝒏𝒌}stand in for the homogenized and uniform characteristics.

4. Feature Selection (Wrapper RFE):

Use Wrapper RFE to reduce dimensionality and choose features.

Let 𝑺 = {𝒔𝟏, 𝒔𝟐… , 𝒔𝒎}symbolize the chosen attributes following dimensionality reduction.

5. Model Selection:

Select the most effective ML algorithms, such as DT, Support Vector Machines, or
Convolutional Neural Networks.

Represent the chosen ML model as the Model.

6. Ensemble Methods:

The selected ML model should be denoted as a Model.

Let EnsembleModelrepresent the combination of models.

7. Training:

Generate training set TrainSet, validation set ValSet, and test set TestSet.

Train the model on TrainSetand tune hyperparameters on ValSet.

Let TrainedModelrepresent the trained model.

8. Evaluation:

Apply several metrics to the test set to assess the model's performance.

Determine the F1 score, recall, accuracy, and precision; use confusion matrices to conduct
ROC curve analysis.

Let EvaluationMetricsrepresent the evaluation results.

9. Adversarial Testing:

Evaluate the model's robustness against deliberate modifications in malware samples by
conducting adversarial testing.

Improve the model's resilience through adversarial training.

Let AdversarialTestResults represent the outcomes of adversarial testing.

10. Deployment:

Create an API for malware classification or deploy the model in a safe environment.

Maintain the model's efficacy against changing threats by regularly updating it with new data.

Semiconductor Optoelectronics, Vol. 43 No. 1 (2024)
https://bdtgd.cn/

164

Let DeployedModelrepresent the deployed malware detection model.

End

5. Results and Implementation

An ensemble ofMLmodels was used to experiment, including PCA, Wrapper RFE,and the
proposed DT, XGBoost, and
LightGBMmodels.Resultsfromtheseapproacheswereevaluatedusingthetesting and
trainingdataset.

5.1 Hyperparameter using validation set

Table 1 shows the hyperparameters of a model and its performance on the validation set and
test set.The model achieved an accuracy of 0.95 on the validation set and 0.95 on the test set.
The best hyperparameters for the model were {'n_estimators': 200}.

Table 1: Hyperparameters

Parameters Values

Accuracy on the validation set 0.95

Best Hyperparameters {‘n_estimators’:200}

Best accuracy on the validation set 0.95

Accuracy on the test set 0.9996

5.2 Ensemble Confusion Matrix

The ensemble confusion matrix in Figure 3 shows the performance of an ensemble classifier
on a four-class classification task. The ensemble classifier consists of multiple base classifiers,
and the final prediction is made by combining the predictions of the base classifiers in some
way.

A ROBUST MACHINE LEARNING-BASED FRAMEWORK TO LEVERAGE CLASSIFICATION OF MALWARE

165

Figure 3: Ensemble Confusion Matrix

5.3 Performance of Machine Learning Classifiers

Table 2 shows the performance of four ML classifiers: Decision Tree, XGBoost, Light GBM,
and Ensemble. It compares them based on four metrics: Precision, Recall, F1-score, and
Accuracy.

Table 2: Performance of Machine Learning Classifiers

Models Precision Recall f1-score Accuracy

Decision tree 94.14 % 92.00 % 91.9 % 94.6 %

XGBoost 95.21 % 93.00 % 93.15 % 95.87 %

Light GBM 96.00 % 92.87 % 94.05 % 97.12 %

Ensemble 99.87 % 98.54 % 99.85 % 99.96 %

6. Comparison Analysis

Table 3 shows the results of a classification task using three distinct machine-learning
approaches. Out of the three methods, the suggested approach gets the best F1-score (99.85)
and accuracy (99.96). On the other hand, compared to the other two methods, its recall is
slightly lower at 98.54 instead of 100. As applied to this classification position, the suggested
strategy seems to have good potential. Its accuracy and F1-score are higher than those of the
other two methods.Theproposed method was chosen because it is well-suited to the current
categorization job and can achieve the desired results while maintaining a reasonable balance
between recall and precision.

Semiconductor Optoelectronics, Vol. 43 No. 1 (2024)
https://bdtgd.cn/

166

Table 3: Comparison Analysis

Author Technique Precision Recall F1-score Accuracy

Talukder et
al., (2023) [52]

Random Forest, ANN 99 % 99 % 99 % 100 %

Smith et al.,
(2023) [53]

ADABoost,
RandomForest,
Decision Tree

100 % 100 % 100 % 99.95 %

Proposed
Method

Ensemble (Decision
Tree, XGBoost, and
light GBM)

99.87 % 98.54 % 99.85 % 99.96 %

7. Conclusion

As a conclusion, the increasing prevalence of malware is a major problem in today's cyber
environment that threatens the security, privacy, and availability of data stored digitally. This
study argues that ensemble machine-learning models should be used to create a more
sophisticated malware detection system. The suggested method uses a strategic mix of PCA,
RL, DT, XGBoost, and light GBM to improve accuracy and resilience; it leverages the full
CIC-Malmem2022 dataset from the Canadian Institute for Cybersecurity.The study's findings
highlight the effectiveness of the ensemble model, which achieved a remarkable accuracy rate
of 99.96% on the test set. If you want your model to work as well as possible, you should tune
its hyperparameters and examine the confusion matrix in depth. The proposed strategy is
proven to be superior in identifying malware in comparison to existing methods. At the end of
the article, recommended practices are suggested for a safe deployment environment, and the
significance of regular upgrades to address changing cybersecurity risks is emphasized.

Overall, this study shows how powerful ensemble ML models can be against malware and
gives useful advice on how to build and keep up a reliable malware detection system in the
dynamic cybersecurity industry.

Reference

1. Gupta, Ruchika, and S. P. Agarwal. "A comparative study of cyber threats in emerging
economies." Globus: An International Journal of Management & IT 8, no. 2 (2017):
24-28.

2. R. Komatwar and M. Kokare, ‘‘A survey on malware detection and classification,’’ J.
Appl. Secure. Res., pp. 1–31, Aug. 2020.

3. Aslan, Ömer Aslan, and Refik Samet. "A comprehensive review on malware detection
approaches." IEEE Access 8 (2020): 6249-6271.

4. S. A. Roseline, S. Geetha, S. Kadry, and Y. Nam, ‘‘Intelligent vision-based malware
detection and classification using deep random forest paradigm,’’ IEEE Access, vol. 8,
pp. 206303–206324, 2020.

A ROBUST MACHINE LEARNING-BASED FRAMEWORK TO LEVERAGE CLASSIFICATION OF MALWARE

167

5. M. Nisa, J. H. Shah, S. Kanwal, M. Raza, M. A. Khan, R. Damaševičius, and T.
Blažauskas, ‘‘Hybrid malware classification method using segmentation-based fractal
texture analysis and deep convolution neural network features,’’ Appl. Sci., vol. 10, no.
14, p. 4966, 2020

6. Ö. Aslan, M. Ozkan-Okay, and D. Gupta, ‘‘A review of cloud-based malware detection
system: Opportunities, advances, and challenges,’’ Eur. J. Eng. Technol. Res., vol. 6,
no. 3, pp. 1–8, Mar. 2021.

7. https://www.akamai.com/glossary/what-is-malware

8. Alenezi, Mohammed N., Haneen Alabdulrazzaq, Abdullah A. Alshaher, and Mubarak
M. Alkharang. "Evolution of malware threats and techniques: A review." International
Journal of Communication Networks and Information Security 12, no. 3 (2020): 326-
337.

9. Aboaoja, Faitouri A., Anazida Zainal, Fuad A. Ghaleb, Bander Ali Saleh Al-rimy,
Taiseer Abdalla Elfadil Eisa, and Asma Abbas Hassan Elnour. "Malware detection
issues, challenges, and future directions: A survey." Applied Sciences 12, no. 17 (2022):
8482.

10. Wazid, Mohammad, Ashok Kumar Das, Joel JPC Rodrigues, Sachin Shetty, and
Youngho Park. "IoMT malware detection approaches analysis and research
challenges." IEEE Access 7 (2019): 182459-182476.

11. Andrade, Eduardo de O., José Viterbo, Cristina N. Vasconcelos, Joris Guérin, and
Flavia Cristina Bernardini. "A model based on LSTM neural networks to identify five
different types of malware." Procedia Computer Science 159 (2019): 182-191.

12. Matrosov, Alex, Eugene Rodionov, and Sergey Bratus. Rootkits and boot kits:
reversing modern malware and next generation threats. No Starch Press, 2019.

13. Dwivedi, Aarushi, Krishna Chandra Tripathi, and M. L. Sharma. "Advanced
keylogger-a stealthy malware for computer monitoring." Asian Journal For
Convergence In Technology (AJCT) ISSN-2350-1146 7, no. 1 (2021): 137-140

14. Cadden, James, Thomas Unger, Yara Awad, Han Dong, Orran Krieger, and Jonathan
Appavoo. "SEUSS: skip redundant paths to make serverless fast." In Proceedings of
the Fifteenth European Conference on Computer Systems, pp. 1-15. 2020.

15. Sebastio, Stefano, Eduard Baranov, Fabrizio Biondi, Olivier Decourbe, Thomas Given-
Wilson, Axel Legay, Cassius Puodzius, and Jean Quilbeuf. "Optimizing symbolic
execution for malware behavior classification." Computers & Security 93 (2020):
101775.

16. Or-Meir, Ori, Nir Nissim, Yuval Elovici, and Lior Rokach. "Dynamic malware analysis
in the modern era—A state of the art survey." ACM Computing Surveys (CSUR) 52, no.
5 (2019): 1-48.

Semiconductor Optoelectronics, Vol. 43 No. 1 (2024)
https://bdtgd.cn/

168

17. Li, Hongcheng, Jianjun Huang, Bin Liang, Wenchang Shi, Yifang Wu, and Shilei Bai.
"Identifying parasitic malware as outliers by code clustering." Journal of Computer
Security 28, no. 2 (2020): 157-189.

18. Tian, Donghai, Rui Ma, Xiaoqi Jia, and Changzhen Hu. "A kernel rootkit detection
approach based on virtualization and machine learning." IEEE Access 7 (2019): 91657-
91666.

19. Liu, Zhifeng, Desheng Zheng, Xinlong Wu, Jixin Chen, Xiaolan Tang, and Ziyong Ran.
"VABox: A virtualization-based analysis framework of virtualization-obfuscated
packed executables." In Advances in Artificial Intelligence and Security: 7th
International Conference, ICAIS 2021, Dublin, Ireland, July 19-23, 2021, Proceedings,
Part III 7, pp. 73-84. Springer International Publishing, 2021.

20. Smith, S. E. The Geek and the Sheikh. Montana Publishing, 2023.

21. Mamchenko, Mark, and Alexey Sabanov. "Exploring the taxonomy of USB-based
attacks." In 2019 Twelfth International Conference" Management of large-scale system
development"(MLSD), pp. 1-4. IEEE, 2019.

22. Hussain, Abrar, Muhammad Asif, Maaz Bin Ahmad, Toqeer Mahmood, and M. Arslan
Raza. "Malware detection using machine learning algorithms for Windows platform."
In Proceedings of International Conference on Information Technology and
Applications: ICITA 2021, pp. 619-632. Singapore: Springer Nature Singapore, 2022.

23. Akhtar, Muhammad Shoaib, and Tao Feng. "Malware Analysis and Detection Using
Machine Learning Algorithms." Symmetry 14, no. 11 (2022): 2304.

24. Narayanan, Barath Narayanan, and Venkata Salini Priyamvada Davuluru. "Ensemble
malware classification system using deep neural networks." Electronics 9, no. 5 (2020):
721.

25. Lad, Sumit S., and Amol C. Adamuthe. "Malware classification with improved
convolutional neural network model." International Journal of Computer Network &
Information Security 12, no. 6 (2020): 30-43.

26. Kumar, Nitesh, Subhasis Mukhopadhyay, Mugdha Gupta, Anand Handa, and Sandeep
K. Shukla. "Malware classification using early stage behavioral analysis." In 2019 14th
Asia Joint Conference on Information Security (AsiaJCIS), pp. 16-23. IEEE, 2019.

27. Alomari, Esraa Saleh, Riyadh RahefNuiaa, Zaid Abdi AlkareemAlyasseri, Husam
Jasim Mohammed, Nor Samsiah Sani, Mohd Isrul Esa, and Bashaer Abbuod Musawi.
"Malware detection using deep learning and correlation-based feature
selection." Symmetry 15, no. 1 (2023): 123.

28. Masum, Mohammad, Md Jobair Hossain Faruk, Hossain Shahriar, Kai Qian, Dan Lo,
and Muhaiminul Islam Adnan. "Ransomware classification and detection with machine
learning algorithms." In 2022 IEEE 12th Annual Computing and Communication
Workshop and Conference (CCWC), pp. 0316-0322. IEEE, 2022.

A ROBUST MACHINE LEARNING-BASED FRAMEWORK TO LEVERAGE CLASSIFICATION OF MALWARE

169

29. Sitaula, Chiranjibi, and Tej Bahadur Shahi. "Monkeypox virus detection using pre-
trained deep learning-based approaches." Journal of Medical Systems 46, no. 11 (2022):
78.

30. He, Ke, and Dong-Seong Kim. "Malware detection with malware images using deep
learning techniques." In 2019 18th IEEE International Conference on trust, security,
and privacy in computing and communications/13th IEEE International Conference on
big data science and engineering (TrustCom/BigDataSE), pp. 95-102. IEEE, 2019.

31. Yuxin, Ding, and Zhu Siyi. "Malware detection based on a deep learning
algorithm." Neural Computing and Applications 31 (2019): 461-472.

32. Kwon, Young-Man, Jae-Ju An, Myung-Jae Lim, Seongsoo Cho, and Won-Mo Gal.
"Malware classification using smash encoding and PCA (MCSP)." Symmetry 12, no. 5
(2020): 830.

33. Tiwari, Suman R., and Ravi U. Shukla. "An android malware detection technique using
optimized permission and API with PCA." In 2018 Second International Conference
on Intelligent Computing and Control Systems (ICICCS), pp. 2611-2616. IEEE, 2018.

34. Rami, Khyati, and Vinod Desai. "Malware Detection Framework Using PCA Based
ANN." In Computing Science, Communication and Security: First International
Conference, COMS2 2020, Gujarat, India, March 26–27, 2020, Revised Selected
Papers 1, pp. 298-313. Springer Singapore, 2020.

35. Mahmoud, Baffa Sani, and Ahmad Baita Garko. "A Machine Learning Model for
Malware Detection Using Recursive Feature Elimination (RFE) For Feature Selection
and Ensemble Technique."

36. Al Sarah, Neamat, Fahmida Yasmin Rifat, Md Shohrab Hossain, and Husnu S. Narman.
"An efficient android malware prediction using Ensemble machine learning
algorithms." Procedia Computer Science 191 (2021): 184-191.

37. Gunduz, Hakan. "Malware detection framework based on graph variational
autoencoder extracted embeddings from API-call graphs." PeerJ Computer Science 8
(2022): e988.

38. Kornyo, Oliver, Michael Asante, Richard Opoku, Kwabena Owusu-Agyemang,
Benjamin Tei-Partey, Emmanuel Kwesi Baah, and Nkrumah Boadu. "Botnet Attacks
Classification in AMI Networks with Recursive Feature Elimination (RFE) and
Machine Learning Algorithms." Computers & Security (2023): 103456.

39. Manzil, HashidaHaidros Rahima, and Manohar S. Naik. "COVID-Themed Android
Malware Analysis and Detection Framework Based on Permissions." In 2022
International Conference for Advancement in Technology (ICONAT), pp. 1-5. IEEE,
2022.

40. Kumar, Rajesh, and S. Geetha. "Malware classification using XGboost-Gradient
boosted decision tree." Adv. Sci. Technol. Eng. Syst 5 (2020): 536-549.

Semiconductor Optoelectronics, Vol. 43 No. 1 (2024)
https://bdtgd.cn/

170

41. Galen, Colin, and Robert Steele. "Empirical measurement of performance maintenance
of gradient boosted decision tree models for malware detection." In 2021 International
Conference on Artificial Intelligence in Information and Communication (ICAIIC), pp.
193-198. IEEE, 2021.

42. Ullah, Faizan, Qaisar Javaid, Abdu Salam, Masood Ahmad, Nadeem Sarwar, Dilawar
Shah, and Muhammad Abrar. "Modified decision tree technique for ransomware
detection at runtime through API calls." Scientific Programming 2020 (2020).

43. Mustafa Hilal, Anwer, Siwar Ben Haj Hassine, Souad Larabi-Marie-Sainte, Nadhem
Nemri, Mohamed K. Nour, Abdelwahed Motwakel, Abu Sarwar Zamani, and Mesfer
Al Duhayyim. "Malware Detection Using Decision Tree Based SVM Classifier for
IoT." Computers, Materials & Continua 72, no. 1 (2022).

44. Al-Kasassbeh, Mouhammd, Mohammad A. Abbadi, and Ahmed M. Al-Bustanji.
"LightGBM algorithm for malware detection." In Intelligent Computing: Proceedings
of the 2020 Computing Conference, Volume 3, pp. 391-403. Springer International
Publishing, 2020.

45. Gao, Yun, Hirokazu Hasegawa, Yukiko Yamaguchi, and Hajime Shimada. "Malware
detection using LightGBM with a custom logistic loss function." IEEE Access 10
(2022): 47792-47804.

46. Abbadi, M., M. Al-Bustanji, and Mouhammd Al-Kasassbeh. "Robust Intelligent
malware detection using LightGBM Algorithm." International Journal of Innovative
Technology and Engineering 9, no. 6 (2020): 1253-1263.

47. Zhang, ZheMing. "Microsoft Malware Prediction Using LightGBM Model." In 2022
3rd International Conference on Big Data, Artificial Intelligence and Internet of Things
Engineering (ICBAIE), pp. 41-44. IEEE, 2022.

48. Ghourabi, Abdallah. "A security model based on light gum and transformer to protect
healthcare systems from cyberattacks." IEEE Access 10 (2022): 48890-48903.

49. Thosar, Keshav, Pranay Tiwari, Revanth Jyothula, and Dayanand Ambawade.
"Effective malware detection using gradient boosting and convolutional neural
network." In 2021 IEEE Bombay Section Signature Conference (IBSSC), pp. 1-4. IEEE,
2021.

50. Yousefi‐Azar, Mahmood, Vijay Varadharajan, Len Hamey, and Shiping Chen. "Mutual
Information and Feature Importance Gradient Boosting: automatic byte n‐gram feature
reranking for Android malware detection." Software: Practice and Experience 51, no.
7 (2021): 1518-1539.

51. Turnip, ToguNovriansyah, Amsal Situmorang, Ayu Lumbantobing, Josua Marpaung,
and Samuel IG Situmeang. "Android malware classification based on permission
categories using extreme gradient boosting." In Proceedings of the 5th International
Conference on Sustainable Information Engineering and Technology, pp. 190-194.
2020.

A ROBUST MACHINE LEARNING-BASED FRAMEWORK TO LEVERAGE CLASSIFICATION OF MALWARE

171

52. Talukder, Md Alamin, KhondokarFida Hasan, Md Manowarul Islam, Md Ashraf
Uddin, Arnisha Akhter, Mohammad Abu Yousuf, Fares Alharbi, and Mohammad Ali
Moni. "A dependable hybrid machine learning model for network intrusion
detection." Journal of Information Security and Applications 72 (2023): 103405.

53. Smith, Daryle, Sajad Khorsandroo, and Kaushik Roy. "Supervised Feature Selection to
Improve the Accuracy for Malware Detection." (2023).

