Journal Articles (All Issues)



Somesh Nandi1* , Dr Chethana K 2 ,Dr. T Srinivas 3, Dr Rajini V.H4

Keyword Fiber Bragg Grating, Waveguide Bragg Grating , Pressure and Acceleration


A Novel design of Pressure and Acceleration Analysis of multivariate sensor involving different types of Bragg gratings such as chirped, tilted and superstructure are proposed. The design involves a cantilever beam, a waveguide Bragg grating, and a tiny delicate diaphragm. For assessing the acceleration with higher sensitivity, a cantilever beam with a proof mass was formulated. A distinctive mathematical approach utilizing the transfer-matrix technique and coupled-mode theory are proposed to design and observe the Bragg wavelength shift structure of the gratings in case where the pressure and acceleration are applied at the same time. The diaphragm design consists of two different patterns such as square and circular diaphragms and are individually reviewed for assessing the pressure. In contrast to the circular diaphragm, the square diaphragm produces more stress when pressure is applied to it thus resulting in larger sensitivity, and hence square diaphragm is chosen for further analysis. In addition the impact of temperature, pressure and acceleration on the wavelength shift for different types of Bragg gratings is analyzed and compared and the pressure sensitivity of 0.21 pm/Pa and an acceleration sensitivity rate is 6.49 nm/g is achieved.


    [1]. I. Petermann, B. Sahlgren, S. Helmfrid, A.T. Friberg and P.-Y. Fonjallaz, “Fabrication of Advanced Fibre Bragg Gratings Using Sequential Writing with a Continuous Wave UV Laser Source”, Applied Optics 41, 1051–1056, 2002. doi: 10.1364/ao.41.001051. PMID: 11900123. [2]. L. Shenping, K.T. Chan, J. Meng and W. Zhou, “Adjustable multi-channel fibre bandpass filters based on uniform fibre Bragg grating”, Electronics Letters 34, 1517–1519, 1998. DOI: 10.1049/el:19981010 [3]. P. P´erez-Mill´an, J.L. Cruz and M.V. Andre´es, “Active Q-switched distributed feedback erbium-doped fiber laser”, Applied Physics Letters 87, 011104, 2005. [4]. S. Srinivasan and R.K. Jain, “First demonstration of thermally poled electrooptically tunable fiber Bragg grating”, IEEE Photonic Technology Letters 25, 170–172, 2000. DOI: 10.1109/68.823506 [5]. Waldrop, M.M. 2016 More than Moore. Nature 530 144-148 [6]. Hill K. O., Fujii Y., Johnson D. C., and Kawasaki B. S.,"Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication", Applied Physics Letters 32 647-649, 1978. [7]. Venghaus H., "Wavelength Filters in Fibre Optics (Berlin: Springer)", 2006. ISBN : 978-3-540-31769-2 [8]. Alvarez-Botero G., Baron F. E., Cano C. C., Sosa O. and Varon M., "Optical sensing using fiber Bragg gratings: Fundamentals and applications", IEEE Instrumentation Measurement Magazine 20 2 33-38, 2017. DOI: 10.1109/MIM.2017.7919131 [9]. Sahota J. K., Gupta n. and Dhawan D. "Fiber Bragg grating sensors for monitoring of physical parameters: A comprehensive review", Optical Engineering, 59 6 60-90, 2020. DOI:10.1117/1.OE.59.6.060901 [10]. P. Yeh, A. Yariv, and E. Marom, "Theory of Bragg fiber," J. Opt. Soc. Amer. 68, 1196-1201,1978. [11]. Y. Fink, D. J. Ripin, S. Fan, C. Chen, J. D. Joannopoulos, and E. L. Thomas, "Guiding optical light in air using an all-dielectric structure," J. Lightwave Technol. 17, 2039-2041,1999. 10.1109/50.802992 [12]. M. Miyagi, A. Hongo, Y. Aizawa, and S. Kawakami, "Fabrication of germaniumcoated nickel hollow waveguides for infrared transmission," Appl. Phys. Lett. 43, 430-432, 1983. [13]. N. Croitoru, J. Dror, and I. Gannot, "Characterization of hollow fibers for the transmission of infrared radiation," Appl. Opt. 29, 1805-1809, 1990. [14]. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539,1999. DOI: 10.1126/science.285.5433.1537 [15]. M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, J. D. Joannopoulos, "An all-dielectric coaxial waveguide," Science 289, 415-419, 2000.DOI:10.1126/science.289.5478.415 [16].Kaplan N., Jasenek J., Červeňová J., Ušáková M. , "Magnetic optical FBG sensors using optical frequency-domain reflectometry", IEEE Trans. Magn., pp. 1-4, 55 (1) 2018. 10.1109/TMAG.2018.2873405 [17]. Yang D., Liu Y., Wang Y., Zhang T., Shao M., Yu D., Fu H., Jia Z. , "Integrated optic-fiber sensor based on enclosed EFPI and structural phase-shift for discriminating measurement of temperature, pressure and RI ", Opt. Laser Technol., Article 106112, 126 .2020. [18]. Koo K.N., Ismail A.F., Othman M.H.D., Samavati A., Tai Z.S., Rahman M.A., Bakhtiar H., Mat M.A., "Fabrication and modification of temperature FBG sensor: role of optical fiber type and Cu sputtered thickness," Phys. Scr., Article 095509, 95 (9) 2020. DOI:10.1088/1402-4896/abb05c [19]. Mahiuddin M., "Development of an OADM to reduce the incoherent crosstalk in WDM system," ICT Express, Elsevier-2021. [20]. Goh C.S., Set S.Y., Kikuchi K., "Widely tunable optical filters based on fiber Bragg gratings", IEEE Photonics Technol. Lett., pp. 1306-1308, 14 (9) 2002. DOI: 10.1109/LPT.2002.801080 [21]. Sayed A.F., Mustafa F.M., Khalaf A.A., Aly M.H., "An enhanced WDM optical communication system using a cascaded fiber Bragg grating", Opt. Quantum Electron., pp. 1-21, 52 (3) 2020. DOI:10.1007/s11082-020-02305-9 [22]. Ghosh C., Priye V., "Dispersion compensation in a 24 20 Gbps DWDM system by cascaded chirped FBGs Optik", pp. 335-344, (164) 2018. [23]. Talam D.B., El-Badawy E.-S.A., Shalaby H.M., Aly M.H., "EDFA gain flattening using fiber Bragg gratings employing different host materials", Opt. Quantum Electron., pp. 1-17, 52 (3) 2020. [24]. Naik Parrikar Vishwaraj, Chandrika Thondagere Nataraj, Ravi Prasad Kogravalli Jagannath, Prashanth Gurusiddappa, and Srinivas Talabattula., "Chip-scale Temperature-compensated Superstructured Waveguide Bragg Grating Based Multiparametric Sensor", Current Optics and Photonics, Vol. 4, No. 4, pp. 293-301, August 2020


View/Download PDF





Vol. 43 No. 01 (2024)