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ABSTRACT: 

In the present study, we have explored the influence of substit0ution of Cadmium 
(Cd2+) ions on structural, morphological, and magnetic properties of Cobalt-Nickel (Co-Ni) 
spinel ferrites synthesized by the Sol-Gel Combustion method. The lattice constants exhibited 
an increasing trend with respect to Cadmium contents. XRD study found hindered Crystallite 
size with increasing Cd concentration.  Field Emission Scanning Electron Microscopy (FE-
SEM) and HR-TEM was used to observe the surface morphology. The average grain size 
estimated from the FE-SEM microstructures was found to be in the range 148 – 46 nm for the 
studied samples. HR-TEM predicts the grain size in the range of 112-44 nm. Fourier transform 
infrared (FT-IR) spectra identified two prominent absorption bands from 597.53–574.82 cm‐1 
and 417.18–420.27 cm‐1 corresponding to the tetrahedral and octahedral voids, respectively. 
X-ray density, Bulk density, hopping length show increasing trend, while porosity is decreasing 
with Cadmium content. The saturation magnetization (Mୱ), Remanent magnetization (M୰) 
observed to be increasing upto x = 0.2 concentration of Cd and decreasing thereafter due to 
spin canting effect. The maximum saturation magnetization (Ms) was found to be 78 emu/gm 
for the sample with x = 0.2. Total magnetic moment (𝑛஻) follow the similar trend as Mୱ. 
Coercivity is reducing linearly with increasing Cd doping. 

 
1. Introduction: 

In his popular lecture “There is plenty of room at the bottom” in 1959 at the annual 
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American Physical Society meeting at Caltech, Richard Feynman conceptualized the direct 
manipulation of individual atoms as a more robust form of synthetic chemistry. With its golden 
period in 1980’s, Nanotechnology has revolutionized our industries and our lives since then. 
Spinel ferrite nanocrystals demonstrate magnetic properties due to the presence of magnetic 
ions on its tetrahedral (A) and octahedral (B) sites and that also depends on the relative strength 
of their inter sub lattice (JAB) and inter sub lattice (JBB, JAA) interactions [1]. Any changes in 
the numbers of the magnetic ions in both the sites, certainly affect the magnetic properties. 
Literature review revealed that spinel ferrite properties are greatly influenced by the method of 
synthesis, so the different methods of nanoferrites like sol–gel method, co-precipitation 
method, ball milling, microemulsion processing, etc. received special attention [2] [3] [4] [5]. 
Among other Spinel ferrites, Co-Ni ferrite nanostructures exhibit remarkable electromagnetic 
properties allowed them to be striking applicants for high-frequency electronic devices in 
telecommunication applications [6]. 

Nickel ferrite is a well-known soft magnetic material with inverse spinel structure, 
where A site contains Fe 3+ ions only but B sites contains both Ni 2+ and Fe 3+ ions [7], which 
have a low value of coercivity and saturation magnetisation [8-9]. Cobalt belongs to a hard 
magnetic material category, so its substitution on nickel ferrite, exhibits large magneto-
crystalline anisotropy constant and high intrinsic coercivity [10-11]. Due to combined hard and 
soft nature of the ferrites due to Nickel and cobalt respectively, the modified magnetic 
properties make Cobalt Nickel ferrite nanocrystals advantageous for application in biomedical, 
data storage, information delivery devices, magnetoelectric materials and as microwave 
absorption material [12-14]. Hosseini et al. [15] studied the catalytic activity of Ni–Co ferrite 
on the growth of carbon nanotube and indicated an inverse spinel structure for Ni–Co ferrite. 
This suggests that Ni2+ and Co2+ cations resides the octahedral sites while Fe 3+ cations occupy 
both octahedral and tetrahedral sites likewise. 

The Cadmium ion substitution fascinatingly alters and enhances ferrite’s structural, 
electrical and magnetic properties. Bhukal et. al. [16] investigated Cd2+ ion substituted nano-
crystalline cobalt–zinc ferrites and  results revealed that the saturation magnetization, 
coercivity and anisotropy constant decrease with increase in the cadmium concentration due to 
redistribution of ions on tetrahedral (A) and octahedral (B) sites . Singhal et. al. [17] found 
increased saturation magnetization up to x = 0·4 and decreases when the value of x is > 0·4 
due to spin canting and existence of Yafet–Kittel (Y–K) angle. Present work aims to study the 
impact of Cadmium doping on cobalt-nickel ferrite's structural, morphological and magnetic 
properties. 
2. Experimental 

Mixed Cadmium doped Co-Ni ferrites having chemical formula Co0.6-x Ni0.4 Cdx Fe2 O4 
with x=0.00 to 0.5  with stepping of 0.1 are synthesized by sol-gel auto combustion technique. 
All chemicals used are of analytical grade. Copper nitrate [Cu(NO3)2·3H2O], nickel nitrate 
[Ni(NO3)2·6H2O], cadmium nitrate [Cd(NO3)2·4H2O], iron nitrate [Fe(NO3)3·9H2O] are taken 
in stoichiometric ratios and citric acid [C6H8O7·H2O] is used a chelating agent. Mixed solutions 
of Metal nitrates and citric acid are evanesced in deionized water which concedes aqueous 
solution. It is mixed with 1:1 M ratio of nitrate to citric acid. The pH of mixed solution gets 
attuned to 7 using AR grade ammonia solution. The mixture is then neutralized with aqueous 
ammonia and heated upto 80oC under constant stirring to transform into to gel form. When 
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burst into flames at any point of the gel, the dried gel is burnt in a self-propagating combustion 
manner till all gel are wholly burnt out to form a fluffy loose ash auxiliary, it is further proceed 
in borosil glass beaker upon a hot plate for supplementary dry process. The ash is lightly ground 
and is calcined at 800oC for 8 h so that the some impurity will evolve. Using X-ray diffraction 
(XRD), phase identification, crystalline size and lattice parameter have been characterized with 
Cu-Kα radiation. The crystalline size is calculated from peak broadening using Scherrer 
formula. Microstructure of the sintered specimens has been analyzed by scanning electron 
microscopy (SEM). Static magnetic properties like Saturation magnetization (Ms), remanent 
magnetization (Mr), coercivity (Hc), remanent ratio (Mr/Ms), etc, of the samples are measured 
at room temperature using vibration sample magnetometer (VSM), operating with magnetic 
field of 20 kOe.  
3. Result and Discussion  
3.1 X-ray Diffraction 

 
Fig. 1(a): Diffraction Pattern of Cd substituted Co-Ni Ferrite 
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Fig. 1(b): Shifting of (311) peak to lower 2θ values with Cd concentration 

The X-ray diffraction patterns of Co0.6-x Ni0.4 Cdx Fe2 O4 (x =

 0.0, 0.1, 0.2, 0.3, 0.4 and 0.5) are illustrated in Fig. 1(a). The observed XRD patterns were 
matched and indexed with the help of PDF no. (44-1485) and (22-1086) for Ni and Co ferrites 
The formation of the cubic structure of spinel ferrites have been established by the presence of 
peaks in XRD structure conforming to miller indices (111), (220), (311), (222), (422), (511), 
(440), (620). The inter planner distance 𝑑 for the highest intensity peak has been calculated 
using Bragg's law [18]. The most dominant peak (311), at around 35°, confirms the formation 
of cubic spinel structure with a space group of Fd-3m. The peaks are well resolved and clearly 
indicate the polycrystalline nature of the ferrite. A prominent feature in these patterns is that 
the broadening of the peaks increases continuously with increasing cadmium substitution in 
relation to the ferrite without cadmium, indicating that the cadmium addition reduces the 
crystallite size of the Co–Ni ferrite. It can be seen from Fig. 1(b) that Cd doping caused a shift 
of XRD patterns to lower diffraction (2θ) angles. However, there are two additional humps in 
the XRD patterns of the x=0.1, 0.2, and 0.3 samples which can be associated with impurity 
phase Fe2O3 as indicated in Fig. 1(a) [19]. The slight change in the position of XRD peaks with 
varying dopant concentration is caused by the nature of the metal cations, their ionic radius, 
band energy and their favorable sites [20]. The observed and calculated values of interplanar 

distance 𝑑 are in good agreement with each other. The lattice constant  ‘𝑎’ (Å) for all the 
samples was calculated using the prominent (311) peak using the equation, 

𝑎 = 𝑑௛௞௟ඥℎଶ + 𝑘ଶ + 𝑙ଶ 
XRD pattern of the samples reveals the shifting of the peak positions toward lower 

angle side with respect to increase in  Cd content which is indicative of the fact that the lattice 
parameter increased with Cd doping. The lattice constants of all the samples observed are listed 
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in Table 1. Lattice constant values are found to be in the range 8.3719 Å to 8.4742 Å.  From 
this table it is observed that the lattice constant of Co0.6-x Ni0.4 Cdx Fe2 O4 prepared by 
autocombustion method is increasing with respect to Cd content. The variation of lattice 
constants of Co-Ni ferrites as a function of Cd 2+ content is presented in Fig. 2. From this figure, 
it is observed that the lattice constant increases with increase in Cd 2+ content. The increase in 

lattice constant with Cd 2+ content can be attributed to larger ionic radii of Cd 2+ (1.03 Å) ion 

which is replacing the smaller ionic radii of Co 2+ (0.84 Å) and Fe 3+ (0.67 Å) ion in the spinel 
lattice from tetrahedral (A) site to octahedral (B) site in Co–Ni ferrite [21]. The variation in the 
lattice parameter indicates that the system under study conform the Vegard’s law. According 
to which, the deviations in the values of lattice parameters are due to larger ionic radii of doped 
Cd 2+ (1.03 Å) ion compared to constituent Co 2+ (0.84 Å) and Fe 3+ (0.67 Å) ions. Similar 
behavior is also reported by other researchers also [22-27]. 

Table 1: Structural Parameters of Cd substituted Co-Ni Ferrite 

Concentratio
n 

(x) 

Crystallit
e Size (D) 

(nm) 

Lattice 
Constan

t (a) 
(Å) 

X-Ray 
Densit
y (Dx) 
(g/cm3

) 

Bulk 
Density(Db

)  
(g/cm3) 

Porosit
y (P) 
(%) 

Hopping 
Length 

𝑳𝑨 
(Å) 

𝑳𝑩 
(Å) 

0 31.38 8.37531 5.1197  2.2 57.03 
3.626

6 
2.961

2 

0.1 25.40 8.37532 5.4242  2.31 57.41 
3.626

6 
2.961

2 

0.2 24.77 8.38468 5.5451  2.54 54.19 
3.630

7 
2.964

4 

0.3 24.68 8.39248 5.6314  2.98 47.08 
3.634

0 
2.967

2 

0.4 20.70 8.37191 5.7676  3.2 44.52 
3.625

1 
2.959

9 

0.5 20.33 8.47418 5.9151  3.28 44.55 
3.669

4 
2.996

1 
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Fig. 2: Variation of Lattice constant with respect to Cd concentration 

 

 
Fig. 3: Variation of Crystallite Size with respect to Cd concentration 

 
A clear variation is observed in FWHM of XRD diffractogram, which is reflected in 

the calculations of the crystallite sizes. Table 1, shows the variation of the average crystalline 
sizes for the cubic spinel phase. The average crystallite size for all samples of Ni0.4Co0.5-

xCdxFe2O4 using (311) plane was determined by Debye Scherrer formula [28], 
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𝐷 =
0.94𝜆

𝛽𝑐𝑜𝑠𝜃
 

where 𝜆 is the wavelength of X-ray, 𝛽 is the full width at half maxima, and 𝜃 is the Bragg’s 
diffraction angle. The average crystallite size ‘𝐷’ is presented in the Table 1. From this table it 
is observed that, the crystallite size of the sample lies in the nano particle regime with the range 
20.33 to 31.38 nm. It is observed that there is a homogeneous decrease in the crystallite size as 
the Cd 2+ ion concentration surges [29]. The average particle size of Co0.6 Ni0.4 Fe2 O4 is 31.38 
nm, which decreases with increasing Cd 2+ ion concentration and becomes 20.33 nm in the case 
of Co0.1 Ni0.4 Cd0.5 Fe2 O4. It is understood from the above observation that the crystal growth 
is hindered due to the presence of Cd 2+ ions in the spinel ferrite [30-32]. 

The hopping length 𝐿஺ and 𝐿஻, which are respectively defined as the gap between the 
magnetic ions in A-sites and in B- sites, can also be evaluated by considering the experimental 
value of lattice constant, using the following equations, as given in Table [1] 

𝐿஺ = ቆ
√3

4
ቇ 𝑎 

𝐿஻ = ቆ
√2

4
ቇ 𝑎 

It has been found that both 𝐿஺ and 𝐿஻ increases with doping of cadmium on Co-Ni Ferrite, as 
there is an increase of lattice constant value for Co-Ni Ferrite nanocrystals, which is attributed 
to the difference in the ionic radii of constituent ions  [20] [33]. 

Role of density in ferrites is very influential in determining its magnetic and electrical 
properties. It is well-known that high permeability can be achieved through enhanced density 
of the ferrites. In the present work, X-ray density (𝐷௫) for each sample is calculated using the 
relation, 

𝐷௫ =
8𝑀

𝑁𝑎ଷ
 

where 𝑀 is the molecular weight of the sample, 𝑁 is the Avogadro’s number and 𝑎 is the lattice 
constant. Also, the bulk density (𝐷஻), of the samples was measured using the relation, 

 𝐷஻ =
𝑚

𝑉
 

where 𝑚 is the mass of the bulk sample in grams, and 𝑉 is its volume in cubic centimeters. The 
variation of X-ray density (𝐷௫) and bulk density (𝐷஻) with respect to Cd 2+ concentration (x) is 
presented in Table [1]. The bulk and X-ray densities as a function of Cd content are shown in 
Fig. 4. It is observed that the X-ray density increases almost linearly with increasing Cd 
concentration [34]. The bulk density imitates almost the similar general behavior as of X-ray 
density. The results reveal that substitution of Cd has a pronounced effect on the densification 
of the CoNiFe2O4 [35, 25]. The Bulk densities (𝐷஻) are lower than X-ray densities 𝐷௑, which 
is expected due to existence of cracks and pores in a sintered specimen during sintering process 
on the macroscopic scale and vacancies in the lattice on the atomic scale [36-37]. The 
enhancement in x-ray density is attributed to the higher atomic weight of cadmium (112.4 
a.m.u) than cobalt (58.93 a.m.u). Increase in lattice parameter and enhanced cell volume may 
also made contribution to the improved X-ray density [38-39].  
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Fig 4. Variation of X-ray density and bulk density with respect to Cd content 

 
Fig. 5. Variation of Porosity with respect to Cd content 

 
The porosity (P) of the samples is calculated by using the relation [40], 

𝑃 = 1 −
𝐷஻

𝐷௫
 

where 𝐷஻ is the bulk density and 𝐷௫ is the X–ray density. The porosity of Ni0.4Co0.5-xCdxFe2O4 
nanoferrites are presented in Table 1. It is displayed in Table 1 that the porosity of samples is 
inversely proportional to measured density of samples. The data reveals the reduced porosity 
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with increase in Cd 2+ content. The decrease in porosity may be due to the formation of more 
oxygen vacancies with the substitution of Cd ions in the samples and virtually less cation are 
formed. [41-43].        
 
3.2 FTIR spectroscopy 

 
 (a) 

 
(b) 

Fig. [6]: FTIR spectrogram of Co0.6-x Ni0.4 Cdx Fe2 O4 (with x=0.0, 0.1, 0.2, 0.3, 0.4 and 0.5) 
ferrites. (a) For 400 - 4000 cm-1 and (b) 400 - 700 cm-1 wavenumber range. 
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FTIR analysis has been used to study the occurrence of various absorption bands in the 

spectra and analyzed on the basis of different cations present on tetrahedral (A-) and octahedral 
(B-) sites of spinel lattice [44]. It is also useful in determining the local symmetry in crystalline 
solids, non-crystalline solids, ordering phenomenon in spinels, presence/absence of Fe 2+ ions 
and also to determine force constants and elastic moduli of ferrite systems [45-47]. 

According to Waldron’s group theoretical considerations [45], the unit cell of cubic 
spinel can be formed by tetrahedral (A) and octahedral (B) sites and there exist two 
fundamental I.R. active vibrational modes in the spinal structure. Accordingly, band 𝜈ଵ can be 
assigned to stretching vibrations of the tetrahedral metal–oxygen (Me–O) bond while band 𝜈ଶ 
is associated with the metal–oxygen vibrations in octahedral sites. The spectral difference is 
caused by the variation in band lengths in the octahedral and tetrahedral sites. Higher value of 
band  𝜈ଵ, than that of  𝜈ଶ reveals that the normal vibration mode of the tetrahedral complexes 
is more than that of the corresponding octahedral sites. This may be the consequence of a 
shorter bond length in the tetrahedral site in comparison to that in the octahedral one. 
 

Fig. [6] shows the FTIR absorption bands of Co0.6-x Ni0.4 Cdx Fe2 O4 (with x=0.0, 0.1, 
0.2, 0.3, 0.4 and 0.5) ferrite systems, which were recorded at room temperature in the 
wavenumber range of 400 - 4000 cm-1. It is a well-known that normal and inverse cubic spinels 
have four fundamental IR bands. Two of them, around 600 and 400 cm−1, are common for 
almost all spinel-type ferrites. The values of absorption frequencies of all samples are given in 
Table [2]. The difference in the band’s position is due to the change in the bond length of Fe3+– 
O2 in the A- and B-sites. The appearance of these two absorption frequencies in the samples 
also confirms the formation of the spinel structure. However, the band’s position is influenced 
by factors for instance preparation method, grain size, and annealing conditions [48]. In the 
present investigation, the characteristic bands  𝜈ଵ and 𝜈ଶ were found to be located within the 
ranges 574–597 and 417–420 cm−1, owing to the fundamental vibrational mode of tetrahedral 
(A) and octahedral (B) position of ferrites [49-51]. Depending on the mass of the metal cations 
and strength of the bond between metal cation and oxygen, absorption occurred at different 
frequencies. In all spinel ferrites, two main broad metal oxygen bands are seen in the FTIR 
spectra [45, 52-54]. The first and strongest absorption band (𝜈ଵ), observed in the range 
574– 597 𝑐𝑚ିଵ, corresponds to intrinsic stretching vibrations of the metal ion at the tetrahedral 
site, (Mtetra - O; Cd 2+↔ O) [34], whereas the lowest band (𝜈ଶ), that observed in the range 
417– 420  𝑐𝑚ିଵ is assigned to octahedral metal stretching vibration (M octa - O; Fe 3+ ↔ O and 
Co2+ ↔ O, Ni2+ ↔ O) [45]. The band appearing at 3438 cm-1 Corresponds to O-H stretching 
vibration of H2O; the special absorption peak at 2922 cm -1 corresponds to O-H group of citric 
acid; the band at 1377 cm-1 corresponds to antisymmetric NO 3 stretching vibrations and the 
band at 1639 cm-1 corresponds to carbo-oxalate anions [53-54]. 

It is known that an increase in site radius decreases the fundamental frequency and 
consequently the center frequency shift toward lower values. Co 2+ ions occupied octahedral B 
sites in Cobalt-nickel ferrites; the substitution with Cd 2+ ions decline the amount of Co 2+ ions 
and redistributes Fe 3+ ions from B site to A site [55]. In the present case, increase in site radius 
is expected due to replacement of smaller Co 2+ ions (0.072 nm) by larger Cd 2+ (0.097 nm) 
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ions. This is due to the fact that substituted Cd 2+ ions preferentially occupy the A site only and 
the difference between the ionic radii of A-site Fe 3+ (0.064 nm) and Cd 2+ (0.097 nm) cations 
is much larger as compared to those of B-site Fe 3+ (0.064 nm) and Co 2+ (0.072 nm) cations 
[33]. 
 
 
3.3 Scanning electron microscopy 
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Fig. [7] SEM micrographs and histogram of (a) Co0.6Ni0.4Fe2O4 (b) Co0.5Ni0.4Cd0.1Fe2O4   
(c) Co0.4Ni0.4Cd0.2Fe2O4 (d) Co0.3Ni0.4Cd0.3Fe2O4 (e) Co0.2Ni0.4Cd0.4Fe2O4 (f) 
Co0.1Ni0.4Cd0.5Fe2O4 

Table [2]: Grain Size and absorption band edges 
 

Composition Grain Size (nm) Absorption Band Edges 
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(Wavenumber in cm-1) 
SEM TEM 𝝂𝒕 𝝂𝒐 

Co0.6 Ni0.4 Fe2 O4 148 112 588.75 417.18 
Co0.5 Ni0.4 Cd0.1 Fe2 

O4 
62 57 597.53 420.27 

Co0.4 Ni0.4 Cd0.2 Fe2 

O4 
63 - 578.46 418.21 

Co0.3 Ni0.4 Cd0.3 Fe2 

O4 
53 48 592.42 419.80 

Co0.2 Ni0.4 Cd0.4 Fe2 

O4 
55 - 589.85 419.24 

Co0.1 Ni0.4 Cd0.5 Fe2 

O4 
46 44 574.82 418.21 

 
The SEM micrographs and respective histogram distribution of the nanoparticles for 

Co 1-x Ni0.4 Cd x Fe 2 O 4 (where x = 0.00, 0.1, 0.2, 0.3, 0.4 and 0.5) system of ferrites are 
illustrated in Fig. [7]. FESEM images as in Fig. [7], further confirms the spherical shape of the 
ferrite nanocrystals. The average Grain size of the samples are found to be in the range 148 nm 
to 46 nm from their size distribution graphs in Fig. [7], which are in consistent with that 
obtained from HRTEM. 

The crystallite size determined by XRD is different from the grain sizes observed from 
SEM. This indicates the grains observed in the SEM are the domains formed by aggregation 
of nanosize crystallites [56]. Agglomeration is the result of the magnetic interactions and high 
surface energy of the nanoparticles. It is observed that Grains are of well-defined boundaries 
and less agglomerated for doped samples as compared to pure Co-Ni Ferrite. Since the 
magnetization of the undoped Cobalt nickel ferrite is higher than that of the doped samples due 
to nonmagnetic nature of Cadmium, the dipole–dipole interaction is prevailing in undoped 
Cobalt-nickel ferrite nanoparticles; consequently, the attractive force between the nanoparticles 
of undoped sample is greater [57]. Thus agglomeration is more dominant in Co 0.6 Ni0.4 Fe 2 O 

4 sample. The decreasing grain sizes with increase in Cd composition may be attributed to the 
reduction in oxygen vacancies which can be verified by the energy dispersive X-ray (EDAX) 
analysis of the prepared samples [58].  
 
 
3.4 Transmission electron microscopy 
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Fig. [8]   TEM images and histograms of Co0.6-x Ni0.4 Cdx Fe2 O4 (with x=0.0, 0.1, 0.3 and 
0.5) 

Morphological analysis has been performed by TEM imaging technique, using a JEOL 
JEM-2100 TEM instrument, where gun voltage varies from 5 kV to 20 kV. TEM images show 
spherical morphology and uniform distribution for respective nanocrystals as in Fig. [8]. These 
TEM images have been analyzed by using the ImageJ software for the calculation of average 
Grain size, which is found as 112 nm, 57 nm, 48 nm and 44 nm for Co-Ni ferrite nanocrystals 
with concentration x=0, 0.1, 0.3, 0.5 respectively. The agglomerate nature of the ferrite is due 
to the magnetic dipole-dipole interaction among the particles [59-60]. These TEM images show 
that size gets decreased due to doping of Cadmium which is consistent with the XRD and SEM 
observations.                                                                                                                                                                                              
3.5 Magnetic Measurements 
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The compounds of the system Co0.6-x Ni0.4 Cdx Fe2 O4 showed a definite hysteresis loop 
at room temperature, which reveals the ferrimagnetic behaviour (Figure [10]) of the system. 
The magnetization curve reveals the change in the magnetic behavior with Cd 2+ substitution.  
From the hysteresis loops, The saturation magnetization (Ms), coercive field (Hc), and 
remanent magnetization (Mr), magnetic moment and remanent ratio (Mr/ Ms) of the samples 
can be extracted and are listed in Table [3]. These magnetic parameters depend on grain size, 
Cd 2+ concentration, anisotropy and magnetic interaction of A–B sites [1, 61-63]. Apart from 
this, magnetic properties are strongly influenced by micro-strain that gets produced within the 
lattice sites due to doping as well as magnetic and non-magnetic nature of the doping elements 
[7]. From Table [3] it is seen that the saturation magnetization increases with increase in 
cadmium content upto x =0.2 and then shows decreasing trend later on.  

 
Fig. [10] M–H loops for Co0.6-x Ni0.4 Cdx Fe2 O4 (x=0.0, 0.1, 0.2, 0.3, 0.4 and 0.5) 

For ferrites, the variation in saturation magnetization Ms is attributed to both surface 
spin effect and cation distribution on the A and B sites. Superexchange interactions between 
the two magnetic cations via an intermediate oxygen ion in the spinel structure can occur as a 
result of intra-sublattice AA and BB interactions and inter-sublattice AB interactions. The 
strength of the superexchange interactions depends on the angle and distance between the two 
metal cations so that among them AB superexchange interaction is the strongest one and AA 
interaction is the weakest one and magnetic moments of two sublattices are opposite. The total 
magnetic moment depends on the magnetic moment of the A- and B-sites. It should be noted 
that the total saturation magnetization depends on several factors such as temperature, process, 
chemical composition, grain size, density, and so on, in addition to the distribution of cations 
in these two sites. 

With increase in cadmium concentration Neel’s two sublattice model [64] is able to 
explain the increase of magnetization upto x = 0.2 at room temperature. According to the 
Neel’s model the resultant magnetization is the difference between A-site and B-site 
magnetization. The predominant super exchange interactions occurring between A and B sites 
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magnetic ions, favor collinear and anti-parallel alignments of the spins at A and B sites 
(Magnetic field effect on the complex permeability spectra in a Ni–Zn ferrite) [65]. Since the 
magnetic moments on A and B sites are in opposite directions eliminating each other and also 
the magnetization of sub-lattice B is more than that of A, the magnetization of nanoparticles is 
mostly caused by sub-lattice B [31]. Mathematically, 

𝑀ே௘௧ = 𝑀஺ + 𝑀஻ 
where MA and MB are the magnetization of the sublattices A and B site, respectively. The 
substitutions of non-magnetic divalent cadmium ions on the A-sites transfer the trivalent iron 
(Fe3+) ions on B sites affecting the magnetic moments of individual sub lattice and A-B 
interactions. As the cadmium ions increase at A site, the magnetization of tetrahedral site 
decreases, this results in an increase of net magnetization, which is in agreement with Neel’s 
model [66]. 

 
Figure [11]: Variation of Saturation Magnetisation (𝐌𝐬) with Cd content  
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Figure [12]: Variation of Remanent Magnetisation (𝐌𝐫) with Cd content  

 
The saturation magnetization values increased from 57.64 emu/g for Co0.6 Ni0.4 Fe2 O4 

to reach a maximum value of 78.71 emu/g for Co0.4 Ni0.4 Cd0.2 Fe 2 O 4 as indicated in Table 3, 
which indicates that Ms increases with increasing Cd 2+ ions concentration until  x <= 0.2 . 
Similar trend was observed by other researchers too [67-69]. 

Substitution of diamagnetic cations in one sublattice of ferrimagnet leads to spin 
canting in the other sublattice resulting in decrease in total magnetization per formula unit. The 
reason for the decrease in magnetization beyond x=0.2 is that the magnetization of A-sublattice 
is so diluted that the A–B exchange interaction no longer remains stronger and thereby B–B 
sublattice interaction becomes strong, which in turn disturbs the parallel arrangement of spin 
magnetic moments on the B-site and hence canting of spin occurs. Neel’s two-sublattice 
collinear ferrimagnetism is observed for the system up to x≤0.4 and beyond this limit three-
sublattice non-collinear spin canting model is predominant. The existence of canted spin gives 
rise to the Yafet-Kittel angle (a Y-K), which compares the strength of A–B and B–B exchange 
interactions [70]. 

Neel’s two sublattice model is unable to explain the decrease of magnetization from x 
=0.3 to x=0.5 at room temperature. The decrease of magnetization can be treated theoretically 
by triangular arrangement of spins as proposed by Yafet and Kittel (Antiferromagnetic 
Arrangements in Ferrites)[70]. The reason for the decrease in magnetization beyond x=0.2 is 
that the magnetization of A-sublattice is so diluted that the A–B exchange interaction no longer 
remains stronger and thereby B–B sublattice interaction becomes strong, which in turn disturbs 
the parallel arrangement of spin magnetic moments on the B-site and hence canting of spin 
occurs [71]. Therefore, in the present system the concentration dependence of Ms can be 
attributed to canting of spins which gives rise to Yafet-Kittel (Y-K) angles, suggesting A-B 
and B-B super exchange interactions to be comparable in strength. Y-K angles are computed 
from the data obtained in the hysteretic experiment using following equation [72]: 
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cos 𝛼௬௞ =
𝑛஻ + 5(1 − 𝑥)

(7 + 𝑥)
 

where 𝑛஻ is expressed in the units of Bohr-magneton and 𝑥 represents the contents of cadmium. 
The non-zero Y–K angles suggest that the magnetization behavior cannot be described by 
Neel’s two-sublattice model due to the presence of spin canting on B-sites, which increases the 
B–B interaction and consequently it weakens the A–B interaction [73]. Thus, Saturation 
magnetization decreases from 78.71 emu/gm (x = 0.2) to a minimum value of 53.29 emu/gm 
(x = 0.5) uniformly with respect to Cd concentration. This trend is in accordance with results 
reported by other researchers. [39, 74-77]. 
 

Table [3]: Magnetic Properties of Co0.6-x Ni0.4 Cdx Fe2 O4 

 
The ratio of the remanence magnetization (Mr) and saturation magnetization (Ms) i.e. 

𝑅 =  Mr /Ms is the key factor to conclude the magnetic nature (in the terms of single/multi 
domain) of the ferrite materials. [78] Thus, in the present case, the values of the remanence 
ratio (R = Mr /Ms) were evaluated from the M−H plots and its values are tabulated in Table 
[3]. As per the previous reports, if R ≥ 0.5, then the materials consist of the single domain 
structure, however if R < 0.5, then the materials consist of the multi-domain structure [79]. As 
observed in Table [3], the values of R varies in between the 0.26 to 0.48, which is lesser than 
0.5.  It indicates the existence of multi-domain particles in the prepared samples. In the multi-
domain magnetic structure, the movements of the domain walls permits trouble-free alteration 
in the orientations via externally applied magnetics field [73] [80-83]. 

Concentr
ation 

Saturation 
magnetizatio

n (Ms) 

Remananc
e (Mr) 

Coercivity 
(Hc) 

Magnetic 
moment,

𝑛஻ 
(𝝁𝑩) 

Mr/Ms Magnetic 
anisotropy 

0 57.64 27.74 1540.75 2.43 0.4812 92510 

0.1 57.08 26.71 1428.30 2.41 0.4680 84928 

0.2 78.71 25.37 1356.15 3.32 0.4760 75292 

0.3 65.36 29.97 1136.12 2.75 0.4585 77353 

0.4 57.00 26.11 835.36 2.40 0.4580 49604 
0.5 53.29 20.79 322.71 2.24 0.2641 26459 
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Figure [13]: Variation of Coercivity (𝐇𝐜) with Cd content  

The Hc values given in Table [3] show a uniform decline with increasing the Cd 
substitution. This value refers to the intensity of the magnetic field required to reduce the 
magnetization of the magnetic sample to zero after the magnetization of the sample has reached 
saturation (Cation distribution investigation and characterizations of Ni1−xCdxFe2O4 
nanoparticles synthesized by citrate gel process) [84]. In general, the Hc is a function of 
anisotropy energy (𝐾௘௙𝑉); in fact, the more anisotropy energy is, the more and more the Hc is. 

Generally, the value of 𝐾௘௙𝑉 is written as follows [85]: 

𝐾௘௙𝑉 = 𝐸௦௛௔௣௘ + 𝐸௦௨௥௙௔௖௘ + 𝐸ொ + 𝐸ெ஼ 

where the anisotropy 𝐸௦௛௔௣௘ is related to the particle shape. Since the shape of the nanoparticles 

studied is independent of increasing the Cd substitution, so this energy does not have significant 
effects on Hc changes. 𝐸௦௨௥௙௔௖௘  term is associated with surface anisotropy. The smaller the 

particle sizes of the nanoparticles, the higher the surface area of the nanoparticles and hence 
greater the anisotropy factor of the nanoparticles. 𝐸ொ is related to the magnetoelastic 
anisotropy, which in fact the lattice parameter shrinkage causes the magnetic atoms to close 
together, resulting in a coupling between the spins and the lattice followed by the increase of 
the 𝐸ொ  contribution. 𝐸ெ஼  is linked to magnetic anisotropy energy. This energy is proportional 
to the anisotropy constant 𝐾ଵ as given in Table [3]. Because of this anisotropy, the magnetic 
material will be directed in the direction where it can be easily magnetized. Finally, the non-
monotonic Hc behavior observed for the samples is a superposition of the changes in the three 
terms of the anisotropy energy of 𝐸௦௨௥௙௔௖௘, 𝐸ொ  and 𝐸ெ஼  in the studied nanoparticles. 

Fig. [13] demonstrate the coercivity as a function of Cadmium concentration. For Co-
Ni Ferrite (at x = 0), the higher values of coercivity Hc value indicates the significant value of 
magnitude of magneto-crystalline anisotropy for the sample. As cobalt is a hard magnetic 
material, its high magneto crystalline nature improves the value of coercivity. The magneto-
crystalline anisotropy originates from spin-orbit (L-S) coupling i.e. interactions of orbital 
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magnetic moments with spin magnetic moments. The strong L-S coupling determines large 
magnitude of magneto-crystalline anisotropy [86] and for Co-Ni Ferrite; it only originates from 
the existence of Co 2+ ions at octahedral B sites [87]. A decrease in coercivity with increasing 
Cadmium concentration may be attributed to the lower magnetocrystalline anisotropy of Cd 2+ 
as compared to that of Co2+ ions which in turn decreases the domain wall energy. That leads to 
lower coercivity according to the Stoner Wolfforth model for nanoparticles (𝐻஼  ~2𝐾/𝑀ௌ ) [88-
91, 57]. 

Magnetocrystalline anisotropy is the energy necessary to deflect the magnetic moment 
in a single crystal from the easy to the hard direction. Easy axis is the direction inside a crystal, 
along which small applied magnetic field is sufficient to reach the saturation magnetization. 
Hard axis is the direction inside a crystal, along which large applied magnetic field is needed 
to reach the saturation magnetization. The easy and hard directions arise from the interaction 
of the spin magnetic moment with the crystal lattice (spin-orbit coupling). Magnetic anisotropy 
strongly affects the shape of hysteresis loops and controls the coercivity and remanence. 
Anisotropy is also of considerable practical importance because it is exploited in the design of 
most magnetic materials of commercial importance. [92] 

 
Fig. [14] Variation of Magnetic Moment (𝑛஻) with Cd content. 

The values of magnetic moment can be obtained using the values of saturation 
magnetization (𝑀௦) and molecular weight of the samples from the relation [93], 

 𝑛஻ = ൬𝑀௦   ×
𝑀𝑜𝑙. 𝑊𝑡.

5585
൰   emu/g.  

Studies had shown that Co 2+ ions preferentially reside in the B-site [94] which is consistent 
with their favor for large octahedral site energy. The non-magnetic Cd 2+ ions with the large 
ionic radius prefer to occupy for the tetrahedral site (A-site) [95] [92], replacing the Fe 3+ 
magnetic ions. Fe 3+ occupies both A and B-site.   Since Cd 2+ ions had no magnetic moment, 
the fraction of magnetic moment of A-site was reduced and the net magnetic moment of B-site 
was increased. As a result, the net magnetic moment was improved with increasing Cd 
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concentration.  [57]. This Neel’s two sublattice model [64] explains the increase of magnetic 
moment upto x ≤ 0.2 with respect to Cadmium content. The total magnetic moment is 
increased from 2.43 𝜇஻ for x = 0 to 3.32 𝜇஻ for x = 0.2 [96]. The reason for the decrease of 
magnetization beyond x = 0.2 is that the magnetization of A-sublattice is diluted so much that 
the A–B lattice interaction remains no longer stronger and so B–B sublattice interaction 
becomes strong, which in turn disrupts the parallel arrangement of spin magnetic moments on 
the B-site and hence canting of spin occurs [77]. That deviation from collinear ferrimagnetism 
led magnetic moment to decrease from 2.75 𝜇஻ (x = 0.3) to 2.24 (x = 0.5) [97]. 
4. Conclusion 

Structural, morphological and magnetic properties of Cadmium substituted 
nanocrystalline cobalt ferrite, synthesized by the sol-gel auto-combustion method, has been 
investigated in the present study. All samples confirms the formation of cubic spinel structure 
with a Fd-3m space group. It is observed that the lattice constant, bulk density and XRD density 
increases while the average crystallite size and porosity decrease with the Cd2+ concentration. 
The crystallite size of the sample lies in the range 20.33 to 31.38 nm. Lattice constant values 
are found to be in the range 8.3719 Å to 8.4742 Å. The variation in the lattice parameter 
indicates that the system under study conform the Vegard’s law. From FTIR study, the 
characteristic bands  𝜈ଵ and 𝜈ଶ were found to be located within the ranges 574–597 and 417–
420 cm−1, owing to the fundamental vibrational mode of tetrahedral (A) and octahedral (B) 
position of ferrites. The SEM micrographs for Co 1-x Ni0.4 Cd x Fe 2 O 4 (where x = 0.00, 0.1, 
0.2, 0.3, 0.4 and 0.5) ferrite confirms the spherical morphology of the ferrite nanocrystals 
having the average Grain size in the range of 148 nm to 46 nm. HR-TEM predicts the grain 
size in the range of 112-44 nm. Magnetic studies reveal the saturation magnetization (Mୱ), 
Remanent magnetization (M୰) are observed to be increasing upto x = 0.2 concentration of Cd 
and decreasing thereafter due to spin canting effect. The maximum saturation magnetization 
(Ms) was found to be 78 emu/gm for the sample with x = 0.2. Total magnetic moment (𝑛஻) 
follow the similar trend as Mୱ. Coercivity of all samples is reducing linearly with increasing 
Cd concentration. A decrease in coercivity with increasing Cadmium concentration may be 
attributed to the lower magnetocrystalline anisotropy of Cd 2+ as compared to that of Co2+ ions 
which in turn decreases the domain wall energy. Remanence ratio (R<0.5) indicates the 
existence of multi-domain particles in the prepared samples. The substitution of Cd2+ plays an 
important role to modify the structural and magnetic properties of Co-Ni ferrites. 
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