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Abstract: - The main objective of the present paper is to solve the one-dimensional fractal 
heat-conduction problem in a semi-infinite fractal bar that has been developed by local 
fractional calculus employing the analytical Advanced Yang-Fourier transforms method.  
Keywords: Advanced Yang-Fourier transforms, New special function i.e., the generalized S-
function, Riemann-Liouville operator. 
1. Introduction: 
Advanced Yang-Fourier transforms, which the author obtained by generalising Yang-Fourier 
transforms, is a fractional calculus technique for resolving issues in mathematics, physics, and 
engineering. The use of fractional calculus has increased over the past 50 years [1-7]. Most of 
the fractional ordinary differential equations have exact analytic solutions, while others 
required either analytical approximations or numerical techniques to be applied, among them: 
fractional Fourier and Laplace transform [8,33], the heat-balance integral method [9-11], 
variation iteration method (VIM) [12-14], decomposition method [15,33], homotopy 
perturbation method [16,33], etc. 
By using local fractional calculus theory to solve problems involving non-differential 
functions, the issues in fractal media can be effectively resolved [17-24]. Local fractional 
differential equations have been applied to model complex systems of fractal physical 
phenomena, [22-33] local fractional Fourier series method, [30], Yang-Fourier transform [31-
33]. 
 
2. A New Generalized Special Function and Advanced Yang-Fourier transform and 
properties of Advanced Young -Fourier transform: 
Here, we define a new generalized special function S as follows:  

𝑆 = ∑
( ) … ∏ ( )

( ) … ! ( )
 𝑧 ,   𝛼 ∈ 𝑐, 𝑅(𝛼) > 0.  

… (A) 

After putting  ∏ (𝑎 ) = 1 in equation (A) the generalized S-function converts into the S-
function [36]. 
 After putting 𝑎 = 1 and 𝑎 = 1 in the above function (A), then the generalized S-function 
converts into the M-series [34]. 
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And after putting 
( ) … ∏ ( )

( ) …
= 1 in the generalized S-function (A), then the 

generalized S- function converts into the Mittag-Leffler function [35]. 

Let us Consider 𝑓(𝑥) is local fractional continuous in (−∞, ∞) we denote as 𝑓(𝑥) ∈

𝐶  (−∞, ∞)  [24, 25, 27]. 

Let 𝑓(𝑥) ∈ 𝐶  (−∞, ∞) The Advanced Yang-Fourier transform   
developed by authors written in the form [22, 23, 31, 32, 33]: 

𝐹 {𝑓(𝑥)} = 𝑓 , (𝜔) =
1

Γ(𝛼 + 1)
𝑆 (−𝑖 𝜔 𝑥 )𝑓(𝑥)(𝑑𝑥)             

… (2.1) 

After putting 
( ) … ∏ ( )

( ) … !
𝑎 = 1, then it converts into the Yang-Fourier transform [33]. 

Then, the local fractional integration is given by [22-24, 27-29, 33]: 

1

Γ(𝛼 + 1)
𝑓(𝑡) (𝑑𝑥) =

1

Γ(𝛼 + 1)
lim

∆ →
𝑓 𝑡  (∆𝑡 )  

… (2.2) 

Where ∆𝑡 = 𝑡 − 𝑡 , ∆𝑡 =  𝑚𝑎𝑥 ∆𝑡 , ∆𝑡 , ∆𝑡 , …  𝑡 , 𝑡 , 𝑗 = 0, … , 

 𝑁 – 1, 𝑡  = a, 𝑡  = b, is a partition of the interval [𝑎, 𝑏]. 

If 𝐹  {𝑓(𝑥)} = 𝑓 , (𝜔), then its inversion formula takes the form [22, 23, 31, 32,33] 

𝑓(𝑥) = 𝐹 𝑓 ,  (𝜔) =
1

Γ(𝛼 + 1)

1

(2𝜋)
𝑆  (– 𝑖 𝜔 𝑥 )𝑓 ,  (𝜔)(𝑑𝜔)              

… (2.3) 

After putting  
( ) … ∏ ( )

( ) … !
= 1 in, it converts into the Yang Inverse Fourier transform 

[33]. 
Some properties are shown as follows [22, 23]: 

Let 𝐹  {𝑓(𝑥)} = 𝑓 , (𝜔), and 𝐹 {𝑔(𝑥)} = 𝑓 , (𝜔), and let be two constants. Then we have: 

𝐹 {𝑐𝑓(𝑥) + 𝑑𝑔(𝑥)} =  𝑐𝐹 {𝑓(𝑥)} + 𝑑𝐹 {𝑔(𝑥)}  
… (2.4) 

If lim
| |→

𝑓(𝑥)  =  0, then we have: 

𝐹 {𝑓 (𝑥)} = 𝑖 𝜔 𝐹 {𝑓(𝑥)} 
… (2.5) 

In eq. (2.5) the local fractional derivative is defined as: 

𝑓 (𝑥 ) =
𝑑 𝑓(𝑥)

𝑑𝑥
= lim

→

∆ [𝑓(𝑥) − 𝑓(𝑥 )]

(𝑥 − 𝑥 )
 

… (2.6) 
 
Where, 

∆ [𝑓(𝑥) − 𝑓(𝑥 )] ≅ Γ(1 + 𝛼)∆[𝑓(𝑥) − 𝑓(𝑥 )] 
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As a direct result, repeating this process, when: 

𝑓(0) = 𝑓 (0) = ⋯ = 𝑓( ) ,(0) = 0 
… (2.7) 

𝐹 {𝑓 (𝑥)} = 𝑖 𝜔 𝐹 {𝑓(𝑥)} 

… (2.8) 
3. Heat conduction in a fractal semi-infinite  
If a fractal body is subjected to a boundary perturbation, then the heat diffuses in-depth modeled 
by a constitutive relation where the rate of fractal heat flux 𝑞(𝑥, 𝑦, 𝑧, 𝑡) is proportional to the 
local fractional gradient of the temperature [24,33], namely: 

𝑞(𝑥, 𝑦, 𝑧, 𝑡) = −𝐾 ∇ 𝑇(𝑥, 𝑦, 𝑧, 𝑡) 
… (3.1) 

Here the pre-factor K2a is the thermal conductivity of the fractal material. Therefore, the fractal 
heat conduction equation without heat generation was suggested in [24] as: 

𝐾
𝑑 𝑇(𝑥, 𝑦, 𝑧, 𝑡)

𝑑𝑥
− 𝜌 𝑐

𝑑 𝑇(𝑥, 𝑦, 𝑧, 𝑡)

𝑑𝑥
= 0  

… (3.2) 
Where 𝜌  and 𝑐  are the density and the specific heat of the material, respectively. 

The fractal heat-conduction equation with a volumetric heat generation 𝑔(𝑥, 𝑦, 𝑧, 𝑡) can be 
described as [24,33]: 
 

𝐾 ∇ 𝑇(𝑥, 𝑦, 𝑧, 𝑡) + 𝑔(𝑥, 𝑦, 𝑧, 𝑡)𝜌 𝑐
𝜕 𝑇(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑡
 

… (3.3) 
The one-Dimensional fractal heat-conduction equation [24,33] reads as: 

𝐾
𝜕 𝑇(𝑥, 𝑡)

𝜕𝑥
− 𝜌 𝑐

𝜕 𝑇(𝑥, 𝑡)

𝜕𝑡
= 0, 0 < 𝑥 < ∞, 𝑡 > 0 

… (3.4) 
with initial and boundary conditions are: 

𝜕 𝑇(0, 𝑡)

𝜕𝑡
= 𝑆 𝑡 , 𝑇(0, 𝑡) = 0  

… (3.5) 
The dimensionless forms of (3.4) and (3.5) are [27, 33]: 

𝜕 𝑇(𝑥, 𝑡)

𝜕𝑥
=

𝜕 𝑇(𝑥, 𝑡)

𝜕𝑥
= 0 

… (3.6) 
𝜕 𝑇(0, 𝑡)

𝜕𝑥
= 𝑆 𝑡 , 𝑇(0, 𝑡) = 0 

… (3.7) 
Based on eq. (3.4), the local fractional model for 1-D fractal heat-conduction in a fractal semi-
infinite bar with a source term 𝑔(𝑥, 𝑡) is: 

𝐾
𝜕 𝑇(𝑥, 𝑡)

𝜕𝑥
− 𝜌 𝑐

𝜕 𝑇(𝑥, 𝑡)

𝜕𝑡
= 𝑔(𝑥, 𝑡), −∞ < 𝑥 < ∞, 𝑡 > 0 

… (3.8) 



 

 

Semiconductor Optoelectronics, Vol. 41 No. 11 (2022) 
https://bdtgd.cn/ 

562 

With 

𝑇(𝑥, 0) = 𝑓(𝑥), −∞ < 𝑥 < ∞ 
… (3.9) 

The dimensionless form of the model (3.8) and (3.9) is: 

𝜕 𝑇(𝑥, 𝑡)

𝜕𝑥
=

𝜕 𝑇(𝑥, 𝑡)

𝜕𝑡
= 0, −∞ < 𝑥 < ∞, 𝑡 > 0 

… (3.10) 

𝑇(𝑥, 0) = 𝑓(𝑥), −∞ < 𝑥 < ∞ 
… (3.11) 

4. Solutions by the Generalized New Yang-Fourier transform method: 
Let us consider that  

𝐹 {𝑇(𝑥, 𝑡)} = 𝑇 , (𝜔, 𝑡)  
is the Advanced Yang-Fourier transform of T(x, t), regarded as a non-differentiable function of 
x. Applying the Yang-Fourier transform to the first term of Eq. (3.10), we obtain: 
 

𝐹
𝜕 𝑇(𝑥, 𝑡)

𝜕𝑥
= (𝑖 𝜔 )𝑇 , (𝜔, 𝑡) = 𝜔 𝑇 , (𝜔, 𝑡) 

… (4.1) 
On the other hand, by changing the order of the local fractional differentiation and integration 
in the second term of eq. (3.10), we get: 

𝐹
𝜕

𝜕𝑡
𝑇(𝑥, 𝑡) =

𝜕

𝜕𝑡
𝑇 , (𝜔, 𝑡) 

… (4.2) 
For the initial value condition, the Yang-Fourier transform provides: 

𝐹 {𝑇(𝑥, 0)} = 𝑇 , (𝜔, 0) = 𝐹 {𝑓(𝑥)} = 𝑓 , (𝜔) 

… (4.3) 
Thus, we get from Eqn. (4.1), (4.2), and (4.3) 

𝜕

𝜕𝑡
𝑇 , (𝜔, 𝑡) + 𝜔 𝑇 , (𝜔, 𝑡) = 0, 𝑇 , (𝜔, 0) = 𝑓 , (𝜔) 

… (4.4) 
This is an initial value problem of a local fractional differential equation with t as an 
independent variable and a parameter. 
 

𝑇(𝜔, 𝑡) = 𝑓 , (𝜔)𝑆 (−𝜔 𝑡 ) 
… (4.5) 

Hence, using the inversion formula, eqn. (2.1), we get: 

𝑇(𝑥, 𝑡) =
1

(2𝜋)
𝑆 ,(𝑖 𝜔 𝑥 )𝑓 , (𝜔)𝑆 ,(−𝜔 𝑡 )(𝑑𝜔)  

= (𝑀𝑓)(𝑥) 
… (4.6) 
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𝑀 , (𝜔) =
1

(2𝜋)
𝑆 ,(−𝜔 𝑡 ) 

… (4.7) 
From [22, 24] we obtained, 

𝐹 𝑆 −
𝜔

𝐶
=

𝐶 𝜋

1.

1

Γ(𝛼 + 1)
𝑆 , −

𝐶 𝜔

4
 

… (4.8) 

Let  𝐶 4⁄ = 𝑡 . Then we get: 

𝐹 𝑆 −
𝜔

4 𝑡
=

1

Γ(𝛼 + 1)

4 𝑡 𝜋

.
+ 𝑆 (−𝜔 𝑡 ) =

1

Γ(𝛼 + 1)

4 𝑡 𝜋

.
(2𝜋) 𝑀 , (𝜔) 

… (4.9) 

Thus, 𝑀 , (𝜔) have the inverse: 

 

1

(2𝜋)
𝑆 (𝑖 𝜔 𝑥 )𝑀 , ,(𝜔)(𝑑𝜔)  =

1

4 𝑡 𝜋

1

(2𝜋)
Γ(𝛼 + 1) 𝑆 −

𝜔

4 𝑡
 

… (4.10) 
 
Hence, we get: 

𝑇(𝑥, 𝑡) = (𝑀𝑓)(𝑥) =
Γ(1 + 𝛼)

4 𝑡 𝜋
𝑓(𝜉)𝑆 −

(𝑥 − 𝜉)  

4 𝑡
(𝑑𝜉)  

… (4.11) 
The analysis is done now. 
Special case: 
After putting  

(𝑎 ) … 𝑎 ∏ (𝑎 ) 𝑎

(𝑏 ) … 𝑏 k!
= 1 

then the Generalized S- function converts into the Mittag-Leffler function and the solution of 
Advanced Yang Fourier Transforms converts into Yang Fourier Transforms results [33] 

𝑇(𝑥, 𝑡) = (𝑀𝑓)(𝑥) =
Γ(1 + 𝛼)

4 𝑡 𝜋
𝑓(𝜉)𝐸 −

(𝑥 − 𝜉)  

4 𝑡
(𝑑𝜉)  

… (4.12) 
5. Conclusions: 
In this paper, we presented an analytical solution of 1-Dimensional linear heat conduction in 
the fractal semi-infinite bar by the Advanced Yang-Fourier transform of non-differentiable 
functions. We have applied a partial fractional differential equation on a Cantor set, which has 
led to the above results, which are very helpful in solving real-world problems. 
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