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Abstract: - The main objective of the present paper is to solve the one-dimensional fractal
heat-conduction problem in a semi-infinite fractal bar that has been developed by local
fractional calculus employing the analytical Advanced Yang-Fourier transforms method.
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1. Introduction:

Advanced Yang-Fourier transforms, which the author obtained by generalising Yang-Fourier
transforms, is a fractional calculus technique for resolving issues in mathematics, physics, and
engineering. The use of fractional calculus has increased over the past 50 years [1-7]. Most of
the fractional ordinary differential equations have exact analytic solutions, while others
required either analytical approximations or numerical techniques to be applied, among them:
fractional Fourier and Laplace transform [8,33], the heat-balance integral method [9-11],
variation iteration method (VIM) [12-14], decomposition method [15,33], homotopy
perturbation method [16,33], etc.

By using local fractional calculus theory to solve problems involving non-differential
functions, the issues in fractal media can be effectively resolved [17-24]. Local fractional
differential equations have been applied to model complex systems of fractal physical
phenomena, [22-33] local fractional Fourier series method, [30], Yang-Fourier transform [31-
33].

2. A New Generalized Special Function and Advanced Yang-Fourier transform and
properties of Advanced Young -Fourier transform:
Here, we define a new generalized special function S as follows:

oo (a1)k---(ap)kl_[{-(:1(ai)kak X
S =Yk=o () (0g) K TG z% a€c,R(a)>0.

.. (A)
After putting []¥_,(a;)¥ = 1 in equation (A) the generalized S-function converts into the S-
function [36].
After putting a = 1 and a; = 1 in the above function (A), then the generalized S-function
converts into the M-series [34].
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(@) (ap), T (ap*a®
(b0)k(bg),
generalized S- function converts into the Mittag-Leffler function [35].

And after putting =1 in the generalized S-function (A), then the

Let us Consider f(x)is local fractional continuous in (—o0,) we denote as f(x) €
C, (—o0,0) [24,25,27].

Let f(x) € Cy (—00,00) The Advanced Yang-Fourier transform
developed by authors written in the form [22, 23, 31, 32, 33]:

FAf()} = fi¥(w) = Sa(—i%%x ) f (x) (dx)®

1
INa+1) f
.. (2.1)
(@) (ap) HL 1(a1)k k
= 1, then it converts into the Yang-Fourier transform [33].
(b1)k--(bg)  K!

Then, the local fractional integration is given by [22-24, 27-29, 33]:
j=N-1

1
fa+ 1 J (O (@)% = oy Jim, z f(t) At

After putting

. (2.2)
Where At; = tjyq — t;, At = max{Aty, Aty, At, ..} {t;, 611}, 7 =0, ..,
N -1, ty, =a, ty = b, is a partition of the interval [a, b].
If E, {f (%)} = £5*(w), then its inversion formula takes the form [22, 23, 31, 32,33]

1 1
[(a+1)(2n)¢

[oe]

f Se (- 1% ) fF () (dw)®

— 00

fO) = Ff " ()] =

.. (2.3)
(a)k-(ap), T (@) ak
(bl)k...(bq)kk!

After putting = 1 in, it converts into the Yang Inverse Fourier transform

[33].

Some properties are shown as follows [22, 23]:

Let E, {f ()} = £F*(w), and E,{g(x)} = £"*(w), and let be two constants. Then we have:
Fofcf(x) +dg(x)} = cFAf (%)} + dF{g(x)}

.24

If li}inm f(x) = 0, then we have:

F{f* ()} = i“0F{f (x)}

. (2.5

In eq. (2.5) the local fractional derivative is defined as:

ORI () Y OBl ()
x=xq X—>Xo (x - Xo)a

.. (2.6)

Where,
A“[f(x) — f(xo)] = T(1 + @)A[f (x) — f(x0)]
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As a direct result, repeating this process, when:
f(0)=f*(0) = = fED(0) = 0
.. (2.7
E{f ()} = i0E,{f (x)}
... (2.8)
3. Heat conduction in a fractal semi-infinite
If a fractal body is subjected to a boundary perturbation, then the heat diffuses in-depth modeled
by a constitutive relation where the rate of fractal heat flux q(x,y, z, t) is proportional to the
local fractional gradient of the temperature [24,33], namely:
q(x,y,z,t) = —K?**V°T(x,y,z,t)
.. (3D
Here the pre-factor K*“is the thermal conductivity of the fractal material. Therefore, the fractal
heat conduction equation without heat generation was suggested in [24] as:
" d**T(x,vy,z,t) d?°T(x,v,z,t) B

2
K dx2« PaCa dx2a

0

...(3.2)
Where p, and c, are the density and the specific heat of the material, respectively.

The fractal heat-conduction equation with a volumetric heat generation g(x,y,z,t) can be
described as [24,33]:

a
K29V22T (x,y,z,t) + g(x,¥,2,t) paCa %
...(3.3)
The one-Dimensional fractal heat-conduction equation [24,33] reads as:
2a a
Kza%g't)—pacaa%(z't)=0, 0<x<oo,t>0
...(34)
with initial and boundary conditions are:
a%T(0,t)
ST R St%T(0,t) =0
... (3.5)
The dimensionless forms of (3.4) and (3.5) are [27, 33]:
0%“T(x,t)  0°T(x,t) _
dx2«  gx* 0
... (3.6)
a%T(0,t)
opr - St T(0,t) =0
... (3.7

Based on eq. (3.4), the local fractional model for 1-D fractal heat-conduction in a fractal semi-
infinite bar with a source term g(x, t) is:
a 0%%T (x,t) 0%T (x,t)

iixT_p“C“TZ'g(x't)' —o<x<oo,t>0

...(3.8)

KZ
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With
T(x,0)=f(x),—00<x <o
... (3.9
The dimensionless form of the model (3.8) and (3.9) is:
0%%T(x,t) 9%T(x,t)
9x2a = 5ca =0, —o<x<oo,t>0
... (3.10)
T(x,0)=f(x),—00<x <o
... (3.11)

4. Solutions by the Generalized New Yang-Fourier transform method:
Let us consider that
FAT(x, )} = Ty (@, 0)
is the Advanced Yang-Fourier transform of 7(x, ), regarded as a non-differentiable function of
x. Applying the Yang-Fourier transform to the first term of Eq. (3.10), we obtain:

02T (x,t
F“{ a—xga )}=(i2“w2“)rj'“(w.t)=w2“T£'“(w.t)

... (4D
On the other hand, by changing the order of the local fractional differentiation and integration
in the second term of eq. (3.10), we get:

aZa 9% -
F, {—T(x, t)} = mTw'a(w, t)

atth

... (42)

For the initial value condition, the Yang-Fourier transform provides:

Fo{T (x, 00} = Ty (@,0) = F{f ()} = £, ()

... (43)

Thus, we get from Eqn. (4.1), (4.2), and (4.3)

a
S T (@) + 0T (@,6) = 0, (,0) = £“(w)

... (44)

This is an initial value problem of a local fractional differential equation with ¢ as an
independent variable and a parameter.

T(w,t) = f “(0)Se(~w**t*)

... (4.5)
Hence, using the inversion formula, eqn. (2.1), we get:
TG0 = g | Sal0 L @), (~a? ) (do)®
= Mf)(x)
... (4.6)
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1
F,a
M, %(w) = an )aS o (—0?%t%)
.. (4.7
From [22, 24] we obtained,
P wZa _CaT[% 1 S CZawZ(x
“17*\ c2 )| 1. T(a+1"* 4a
.. (4.8)
Let C2%/4% = t% Then we get:
a o a «a
e s w?% B 1 4%2n 7+S 2ayay _ 1 4%2n2 2y
“P*\"2@@)f T T@rn . ) St GMMS)
.. (4.9)

Thus, M5%(w) have the inverse:

! jo Sa((*0®x*)My* (w)(dw)® ——1 ! F(a+1)S, (—‘”—m)
@eme« J ? aatzyz 2m)° 4%t
.. (4.10)
Hence, we get:
_N\2a
TG = (M) = a2 f FOS, (—%) (@6)"
4“t27t2 e
. (4.11)

The analysis is done now.
Special case:
After putting

(ap)k - (ap)k Hi’c:1(ai)k a* _
(b)) - (bq)kk!
then the Generalized S- function converts into the Mittag-Leffler function and the solution of
Advanced Yang Fourier Transforms converts into Yang Fourier Transforms results [33]
( (x—§)2¢

T =M@ =" e | SO\~ age

7 ) d5)"
4ot 2 T2

.. (4.12)
5. Conclusions:
In this paper, we presented an analytical solution of 1-Dimensional linear heat conduction in
the fractal semi-infinite bar by the Advanced Yang-Fourier transform of non-differentiable
functions. We have applied a partial fractional differential equation on a Cantor set, which has

led to the above results, which are very helpful in solving real-world problems.
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