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Abstract 
      In this paper, a three-layer waveguide made of chiral metamaterials, separated by an 
interfaces of graphene, was analyzed. The mathematical formulas for the dispersion relations 
were derived for the hybrid odd and even modes for cases right circular polarization (RCP) and 
left circular polarization (LCP). Having the chiral feature will produce what are called hybrid 
modes. The graphene interfaces consist of three monolayers of graphene with a thickness 
0.34nm , so the thickness of the interface used is 1.02nm . The work aims to investigate the 

changes that occur due to the presence of graphene material as an interface in a chiral slab 
waveguide. The results showed that the existence of a graphene interface in the chiral 
metamaterial waveguide doesn't support zero modes for odd modes. Dispersion curves may 
suffer from sharp changes in wavelengths at which the refractive index of graphene changes 
abruptly. The electric field distribution through the waveguide showed a significant effect due 
to the presence of graphene and the chirality property. 
Keywords: slab waveguide, chiral metamaterial, graphene material, dispersion relation.    
 
1. Introduction  
         Graphene is a two-dimensional atomic carbon crystal of a single layer of graphite, which 
can be prepared by micromechanical cleavage. Graphene has several distinctive characteristics 
due to its special structure, including high intrinsic strength, anomalous quantum hall effect 
and field effect. The optical dispersion of the refractive index is a fundamental optical property 
of graphene that remains unsettled [1]. An optical waveguide is a type of physical structure 
used to guide electromagnetic waves in the optical spectrum [2]. Three-layer slab waveguides 
are mathematically simple and easy to understand compared to the multiple-layer waveguides 
and optical fibers. However, the physical waveguide phenomena of three-layer structures are 
applicable to the more complicated structures. The three-layer slab waveguide is formed by 
three layers of dielectric material with the center layer having the largest index of refraction. 
The number of the guided modes that can be supported by a three layer slab waveguide depends 
on the thickness of the wave guiding layer and the frequency of the wave and refractive indices 
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[3,4]. It is worth mentioning there are various types of modes associated with slab waveguides. 
A trapped or bounded mode is one whose field energy is located in the neighborhood of the 
waveguide or center slab. The mode being a propagating wave implies that the electromagnetic 
energy travels along the waveguide. The electromagnetic energy stays predominantly in the 
high dielectric region. The other type of field satisfying Maxwell's equations is called a 
radiation mode. Radiation modes have field intensities that do not vanish at large distances 
from the slab [3]. 
        In this work, we study a three layer slab waveguide that contains chiral metamaterial 
layers where a graphene sheet has been located between the two adjacent layers. Propagation 
equation and dispersion relations of the waveguide of even and odd modes and for both RCP 
(right-hand circularly polarized) waves and LCP (left-hand circularly polarized) waves are 
presented with some special cases that will be also mentioned. 
 
2. Graphene Nature 
          The unique properties of graphene such as gate-variable optical conductivity, high-speed 
operation and strong coupling with light make it a very promising material for the realization 
of novel modulators. Graphene offers the highest intrinsic mobility and the largest current 
density of any material, as well as an extraordinary thermal conductivity. The surface 

conductivity  , the electric field and the current density J


are directly proportional to each 

other via the formula J E
r r

 [5]. The graphene surface conductivity is a function of the 

temperature  T , the chemical potential FE , the frequency of the exciting electromagnetic wave 

and the diffusion rate of the carriers 1    [6]. The gate voltage gV can dynamically adjust 

the conductivity of graphene because the chemical potential FE  may be controlled by an 

electrical gating. The Kubo formalism is typically used to calculate this conductivity, which is 
associated with the effects of intra-band and inter-band transitions [5,6] 
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where w is the angular frequency, e is the electron change, Bk  is the Boltzmann constant and 

  is the reduced Planck constant. The value of the chemical potential FE  is electrically 

controlled by varying the bias voltage (gate voltage
 gV ) on the graphene layer. The relation 

between chemical potential and the bias voltage is explained by the following formula [7] 
2

2 2
(2)F

g
F r

eE R
V

v   



 

where R is the thickness of the substrate,   is the vacuum permittivity and r is the substrate's 

relative permittivity. The relaxation time   is defined as 
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where Fv  is the Fermi velocity and om  is the carrier mobility [8]. The mainly factors affecting 

graphene's optical characteristics in the THz to mid-infrared range are its carrier concentration, 
carrier mobility, and other electrical properties. Gating or doping can be used to control the 
graphene carrier concentration. The monolayer graphene's thickness is considered as 

0.335nm  [8,9]. 
 
3. Chiral Media 
 The electric and magnetic field are connected in chiral media as [10][16][17]: 
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where , ,E H D
  

and B


 are the electric field, magnetic field, electric displacement and magnetic 

flux density, respectively. The K  represents the chirality parameter,   and   are the 

permittivity and permeability of the chiral medium, ˆ ˆzz  is dyadic tensor. Note that, the second 
terms in Eqs.(4) represents the coupling due to chirality. Here, the vectorial Maxwell's 
equations must be solved, which is a lengthy and complex process. Therefore we shall be 

satisfied by mentioning the coupled wave equations for the E


(electric field) and H


(magnetic 
field), namely [11] 
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where 2 2 2q w      and     is the longitudinal propagation constant which can be 

expressed as effk n  with effn  is the modal effective refractive index and 2 /k    is the 

wave number in vacuum. Note that, Eqs.(5) shows that the two longitudinal fields are coupled 
by the chirality. So, the fields are generally hybrid, instead of being TE or TM modes as in the 
case of zero chirality where 0K  . The eigenfunctions that determine the hybrid nature of the 
modes are given by [10][18][19]. 

                                                         (6)
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where     is the medium's intrinsic impedance. In the absence of chirality, the fields 

are not coupled. In other words, the magnetic and electric fields are completely independent of 
one another. The excited fields in the specified region divide into (LCP,) and (RCP,+) 
components in the presence of chirality. Electromagnetic fields in chiral media can be 
described as [12][20][21]. 

                                                             (7a)

                                                            (7b)
z z z

z z z

E E E

H H H
 

 


 


 

The magnetic and electric fields are related by  
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/                                                                 (8)z zH iE      

 
4. Theoretical Formalism  
        The structure used here is a symmetric slab waveguide contains a isotropic chiral 
metamaterial in all regions where all two adjacent layers separated by a graphene interface. 
Since the graphene's thickness is substantially less than the wavelength, it is thought to be an 
interface rather than a layer. In order to understand this structure. In the structure, the cover 

layer 2x d  and the substrate layer 2x d  are an isotropic chiral metamaterial with 

parameter 1 1 1, , K  . The core layer 2 2d x d    is an another isotropic chiral 

metamaterial that has a permittivity 2 , permeability 2 , chirality parameterand thickness  2K   

Fig.(1) obtains the schematic representation of the present model. . d  

 
Fig. (1): Schematic of chiral metamaterial slab waveguide with graphene interfaces. 

 
Attention that, in our derivations will separate the solutions and results on the basis of 

odd and even that include RCP and LCP. Therefore, for even modes, the longitudinal electric 
field in the three-layers take the forms 
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where the parameters , ,A B C and D represent the amplitudes of the waves in the different 

layers, 2h d , 2 2 2 2
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RCP and LCP waves and in is the refractive index of the chiral material. Using Eqs.(7),(8) and 

(9), longitudinal magnetic field in the three-layer will be 
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Longitudinal components of the magnetic and electric fields are connected to the transverse 
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components]as [13 , , ,y y x xE H E H   
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where the prime refers to the derivation with respect to x . The transverse components ,y yE H  

in the three layers for waveguide have the following forms using Eqs.(11): 
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     The transmitted waves across the interfaces have 

the following conditions [14][22][23]. 
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Matching the components in Eqs.(9), (10), and (12) by using the boundary conditions in 
Eqs.(13) across interfaces, yields 
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where 1 1 2 1 3 1 4 1, , 1 , 1r a i r b i r ia r ib            

To facilitate the solutions, we will unite all the functions to cos  function using the following 

assumptions 2 2sin cosq h X q h   and 2 2sin cosq h Y q h  ,where 2tan ,X q h

2tanY q h , in Eqs.(14), to get 
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The simultaneous equations in Eqs.(15) can be solved to obtain the expressions of the unknown 

parameters , ,A B C  and D as 
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The system in Eqs.(15) has a nontrivial solution, only if the determinant of the coefficients is 
zero. This determinant gives the following dispersion relation 
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The assumption 0, 0X Y   can be made to calculate the dispersion equation for RCP case, 

and the assumption 0, 0X Y   can be made to calculate the dispersion equation for LCP 

case. Combining the two cases, will get  
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Note that, 1    for even modes and the signs ( , )   at the sub index refer to RCP and LCP, 

respectively. For odd modes, in a similar manner, the boundary conditions may be applied to 
produce the system  
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where 2 2cot , cotX q h Y q h   . The last system has a non-trivial solution only for the zero 

determinant of the coefficient matrix. The zero determinant is exactly the dispersion equation 
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where 1   for odd modes. The parameters , ,A B C and D   in this case, will be   
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Eqs.(17) and (19) can be combined to obtain generalized dispersion relation 
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The last equation represents the main achievement in this work, as it represents the 
characteristic equation for the (RCP and LCP) odd and even modes of a slab waveguide 
containing chiral materials in its three layers and in the presence of graphene interfaces.  

As a special cases, with no graphene interfaces, the generalized dispersion relation, i.e. 
Eq.(20), will be 
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Furthermore, for no chiral media in the covering layers, 1 1 1 1,k k q q   , such that Eq.(21) 

reduces to the simple form  
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For chiral covering layers, non-chiral core layer and without graphene interfaces, Eq.(20) will 
be  
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Here, the signs ( )m  are the result of the mathematical derivation, where we get the sign (+) in 

the case of 0X   and 0Y  , while the sign (  ) in the case of  0X  and 0Y  . 
 
5. Results and Discussion 
        In this section, we will take a three-layer chiral metamaterial waveguide with graphene 

interfaces with a thickness 1.02nm  and the parameters 61 10 /Fv m s  4 28 10 /m cm sV   and 

300 oT K  to simulate the conductivity, permittivity and refractive index of graphene material. 
The parameters used to simulate the dispersion relations of guided modes of slab waveguide 
with graphene interface are 1 1 2 21 , 1, 3.5FE eV           and core thickness 1d m . 

Other parameters will be imposed during the simulation. 
          Fig.(2) represents the real and imaginary part of permittivity as function of the chemical 
potential FE  for  a range of different wavelengths. We note that the real part of permittivity 

starts with a positive increase, which means that the graphene layers show insulator properties, 
then the dielectric function turns to become negative, this means that the graphene will change 
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from an insulator state to a metallic behavior. The imaginary part at the beginning is fixed at a 
certain value for each wavelength and then a drop occurs sudden. The epsilon near zero (ENZ) 
point is where the permittivity of graphene approaches zero at a chemical potential FE  is 

around 0.5eV at 1.8 m  . When FE  greater than 0.5eV , the imaginary part of 

permittivity has a smaller absolute magnitude then the real part of permittivity. Surface 
plasmons can propagate on the graphene substrate under these circumstances [15]. 

 
Fig.(2): real and imaginary parts of permittivity as  

functions of chemical potential for many wavelengths. 
 

        The change in the real and imaginary parts of conductivity as function of wavelength is 
seen in Fig.(3), for chemical potential (0.25, 0.5, 0.75,1)FE eV . The real conductivity has a 

sharp drop while the imaginary part starts from zero, after that it decreases to negative values. 
At 0.6 m  , the imaginary part returns to take large positive values of about 200 S . In 

general, the decrease in conductivity is greater when the FE is large, since the lowest decrease 

is at 0.25FE eV and 2.5 m  . when FE increases, the characteristics of the real and 

imaginary parts of the conductivity (the spike and the abrupt fall dot) exhibit a rapid green shift 
in range (0 3) m   .  

        As a function of the number of graphene layers for various wavelengths at 0.5FE eV , 

the real and imaginary parts of refractive index are shown in Fig.(4). Despite the differing 
wavelength, the refractive index shows a distinct drop for both the real and imaginary parts 
with an increase in the number of layers. When compared to the imaginary part of refractive 
index, the real part has the highest value for a single layer. Noting that the number of layers is  
affects thickness, therefore changing the number of layers (either increasing or decreasing) 
gives flexibility to control the thickness for graphene interface. As a result, can be said that the 
refractive index for multilayered graphene decreases with increased the thickness. 
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Fig.(3): real and imaginary parts of conductivity as  

function of wavelengths for many chemical potential. 
 

 
Fig.(4): real and imaginary parts of refractive index as functions 

 of number of layers for many wavelengths at 0.5FE eV .  

 
           Figs.(5) and (6) corresponds to the variation of effective refractive index effn against the 

normalized frequency parameter k d at 1 0.2K   for odd and even modes, respectively. In the 

figures, the solid blue line indicates the state LCP, while the red dashed line represents the RCP 
state. For non-chiral waveguide ( 2 0K  ), we observe that the values of effective refractive 

index effn of blue and red modes match each other of the same order with increasing normalized 

frequency k d . Since neither right-circularly polarized (RCP) nor left-circularly polarized 

(LCP) waves exist in this type of waveguide, transverse magnetic modes TM instead occur 
instead of hybrid modes. For chiral waveguide ( 2 0.2K  ), the RCP and LCP modes of the 

same order diverge as the normalized frequency k d increases. The red lines (RCP) in the case 

2 0.2K   have higher values of effective refractive index compared to the case LCP, and the 

blue lines (LCP) have a smaller backward propagation. Even modes start with 1m  , while 
odd modes with 0m  , then higher-order modes appear with increasing normalized frequency 
k d , so the backward propagation turns into forward with increasing k d . 
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Fig.(5): the dispersion relation for odd modes at 1 0.2K  , where the red  

and  blue lines represent the case RCP and LCP, respectively. 
 

 
Fig.(6): the dispersion relation for even modes at 1 0.2K  , where the red  

and  blue lines represent the case RCP and LCP, respectively. 
 

Fig.(7) represent the dispersion relations of guided modes at 2 0.2K   in chiral 

metamaterial core slab waveguide. Blue color refers to odd modes while red color shows even 
modes. The chiral metamaterial is in the core and cladding regions where the chirality 
parameter for two layers is 1 2 0.2K K  . We note that even modes begin first and then 

followed by odd modes, as well as,  the effective refractive index increases significantly in case 
LCP compared to the RCP ( relative increase ) with increasing normalized frequency k d . 

The zero mode takes different behavior either the remaining modes they appear increases in 
order with high frequencies. For both RCP and LCP, first hybrid mode gets the highest values 
for effective refractive index compared to other modes that have a backward propagation.  
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Fig.(7): the dispersion relation at 1 2 0.2K K  , where the blue and  

red lines represent the case odd and even modes, respectively. 
 
 

Figs.(8) and (9) show dispersion relations of odd and even modes in chiral metamaterial 
core slab waveguide has chirality parameter 2 0.2K   and 1 0K  , respectively. The 

characteristic curves of the two cases: the presence of conductivity (red color) and the absence 
of conductivity (blue color) are presented in order to clarify the effect of graphene material on 
the chiral waveguide as an interface. In the case 0  , the zero mode doesn't appear, which 
indicates that the graphene interface in the chiral waveguide doesn't support zero modes. For 

modes 1 1 1 1, , ,o o e e
R L R LH H H H , are completely identical in both cases, but there is a slight 

difference in the modes 2 2 2 2, , ,o o e e
R L R LH H H H , this difference becomes more obvious with 

increase  mode order and normalized frequency k d Compared to LCP case, the RCP case is 

more affected by the presence of graphene. Generally, the effective refractive index increases 
with increasing normalized frequency k d , but in the case 0  , it doesn't need higher 

frequencies compared to the other case.  

 
Fig.(8): the dispersion relation for odd modes at 2 0.2K  , where the blue 
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and red lines represent the case 0   and 0  , respectively. 

 
Fig.(9): the dispersion relation for even modes at 2 0.2K  , where the blue 

and red lines represent the case 0   and 0  , respectively. 
 
Figs.(10) and (11) illustrates dispersion relation of guided modes (odd and even, 

respectively) at 1 2 0.2K K   of  chiral slab waveguide. We have used different values of the 

dielectric constants for the central region in the waveguide, as a result, we have three different 
cases: the first case 2 2 2.5     at is indicated in blue color, the second case at 2 2 3     
is represented in red color and the third case at 2 2 3.5     is green color. For blue lines, 

we get lower values of effective refractive index within a larger normalized frequency range. 
Red lines have somewhat higher effective refractive index values and lower normalized 
frequencies. Compared to other cases, green lines have the highest effective refractive index 
values and very low normalized frequency range. In general, the effective refractive index 
values typically increase as the values of the dielectric constants increase. This means that the 
relation between them is a direct proportion.  

 
Fig.(10): the dispersion relation for odd modes at 1 2 0.2K K  , 

for various core permittivity and permeability. 
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Fig.(11): the dispersion relation for even modes at 1 2 0.2K K  ,  

for various core permittivity and permeability. 
 

          Figs.(12) and (13) show the distribution of amplitude of electric field component zE  of 

odd guided modes in two cases, the absence and presence of graphene interface, respectively. 
The lines in the figures are: black lines representing the interface graphene, blue lines 
representing the tenth pair of mode 1m   (specific point that achieves a backward 
propagation) and red lines representing the thirtieth pair of mode 1m   (specific point that 
achieves a forward propagation). These pairs were chosen in order to learn more about the 
characteristics of  the electric field distribution. When the conductivity value is raised, we 
observe that there is a significantly change in the red lines. This means that the presence of 
graphene causes a reduction in the effect of forward propagation compared to the backward 
propagation in the core region. The figures show an exponential decrease in the cladding 
medium and oscillatory behavior in the guiding film. The field that results from forward 
propagation has positive and negative values in the chiral metamaterial core and is always 
positive in the layers around it. In the surrounding layers, the field caused by backward 
propagation is high and positive, while in the core layers, it is negative. At 0  , the backward 
propagation field of case RCP  exhibits unusual behavior as it has negative values in the 
cladding layers compared to the remaining cases. 
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Fig.(12): the electric field distribution for odd modes in the waveguide layers with 0  . 
 

 
 

Fig.(13): the electric field distribution for odd modes in the waveguide layers with 0  . 
 

Figs.(14) and (15) show how the electric field distribution of even guided modes varies 
with distance in the waveguide in the case of 0   and 0  , respectively. The electric field 
oscillates in the guiding layer and is evanescent in the surrounding media. The two tails of the 
evanescent are symmetric in the substrate and cladding due to the symmetric structure assumed. 
The fields in the guiding layer are always positive and large, while the fields in the cladding 
layers have negative values.  

 

 
 

Fig.(14): the electric field distribution for even modes in the waveguide layers with 0  . 
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Fig.(15): the electric field distribution for even modes in the waveguide layers with 0  . 
 
6. Conclusions   
         As a conclusion, the graphene may be changed from insulator state to a metallic behavior 

depending of wavelength and FE . When the chemical potential is high, the decrease in 

conductivity is larger and the effective refractive index for multilayered graphene decreases as 
the thickness increases. There may be unique property introduced by the presence of graphene 
interfaces that is distinct from that of a conventional waveguide. The effect of chiral 
metamaterial on the mode increases as  the chiral metamaterial core region thickness increases, 
which in turn causes divergence of modes for the same order. As the values of the dielectric 
constants increases, the values of the effective refractive index often rise. In the guiding film, 
the electric field distribution exhibits oscillatory behavior, while in the cladding medium, it 
exhibits exponential decay.   
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